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67000 Strasbourg, France, and Department of Chemistry and Chemical Biology, HarVard UniVersity,
Cambridge, Massachusetts 02138

ReceiVed: June 23, 1999

The development of a smooth solvation potential from which analytic derivatives can be derived is important
for molecular applications that require geometry optimization and conformational sampling. Derivatives in
conventional boundary element solvation methods are typically treated approximately, and contain singularities
that arise from discontinuities in the potential. We present a simple smooth solvation potential that is based
on the conductor-like screening model proposed by Klamt and Schu¨ürmann (Klamt, A.; Schu¨ürmann, G.J.
Chem. Soc., Perkin. Trans. 2, 1993, 799). The model uses a simple solvent accessible surface with an atomic
sphere discretization based on high-order angular quadrature schemes for spherical harmonics. Surface elements
are modeled by spherical Gaussian functions with exponents calibrated to obtain the exact Born ion energy
and uniform surface charge density and to avoid Coulomb singularities present in conventional point-charge
surface element models. The set of linear equations are modified to produce arigorously smoothsolvation
potential by allowing the effect of new surface elements to be turned on or off over a finite switching region
around each atom. Numerical tests of the method are provided, in addition to discussions of rotational variance,
generalization to arbitrary internal dielectric, use of constraints, and extension to a smooth surface area model.

1. Introduction

Solvation has a profound effect on the behavior of bio-
molecules.1-3 Theoretical treatments of solvation4 range in
complexity from explicit simulation of many solvent molecules
to implicit models that provide an approximate mean field
picture of the bulk solvent. The spectrum of methods that have
evolved and that are routinely applied involve a balance of
accuracy and computational effort. Explicit simulation of the
solvent environment provides a detailed description of solvation.
However, this type of treatment is very costly and frequently
requires a high degree of configurational sampling to determine
equilibrium properties. Implicit models based on a dielectric
continuum approximation are orders of magnitude more ef-
ficient. However, they usually provide less accuracy and do not
give explicit dynamical information about the solvent degrees
of freedom. Integral equation theories offer an alternative that
helps bridge the gap between explicit solvent simulations and
simple continuum treatments of solvation.5 In certain cases,
hybrid methods that combine a hierarchy of theoretical levels
may be the best compromise between reliability and computa-
tional feasibility.

There are many instances where simple continuum solvation
models are useful.6-8 For problems that involve very large
molecules or require many evaluation of the solvation energy,
alternative higher level approaches are not tractable. Continuum
solvation models have been particularly useful for the calculation
of electrostatic fields and solvation free energies of large
biomolecules,1,2,4titration curves, and pKa shifts in proteins,1,2,9,10

solvation effects in quantum mechanical calculations,7,8 non-
equilibrium solvation energies,11 and the stability of peptides
and proteins in molecular simulations of folding events.12,13

For a solvation model to be useful in calculations such as
geometry optimization, transition state searches, and molecular
dynamics simulations, it must yield a potential with continuous
first derivatives with respect to the nuclear positions. In what
follows, the term “smooth” is used to describe such a potential.56

These conditions are not rigorously fulfilled in most boundary
element methods due to the difficulty in defining an analytic
functional form for the surface elements from which gradients
can be derived. The literature is often misleading in claiming
derivation of analytic derivatives of solvation potentials when,
in fact, the solvation potentials contain discontinuities that cause
gradients to become singular. The most common instance of
this involves the neglect of derivatives with respect to the area
of individual surface elements that leads to the so-called “fixed
cavity” approximation. Expressions have been derived for
surface element derivatives for giventessellationof the mo-
lecular surface that improves the smoothness of the potential.14

However, the singularity problem persists if the tessellation
procedure itself is not a smooth function of the atomic
coordinates (which is typically the case). Moreover, other
difficulties can arise such as Coulomb singularities in methods
that model surface elements by point charges,6,15,16 and the
neglect of derivatives with respect to scaling factors that enforce
surface charge normalization in accord with Gauss’ law.17,18

In this paper, an analytic solvation potential based on the
conductor-like screening model15 is introduced that has the
advantages that it (i) is a smooth analytic function of the atomic
positions, (ii ) uses a simple solvent accessible surface, (iii ) uses
surface discretization based on angular quadrature rules, (iV)
avoids point-charge singularities with a Gaussian surface
element model, and (V) is calibrated to obtain the exact Born
energy for spherical ions. The first section outlines the relevant
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electrostatic theory and presents variational relations used for
solving numerical electrostatic problems of the type considered
here. The second section describes the conductor-like screening
model and presents the new approach. The third section provides
numerical tests of the accuracy and convergence of the model.
The appendices contain several useful extensions and gener-
alizations of the theory and methods.

2. Theory

2.1. Electrostatics.The electrostatic potentialφ0 due to a
fixed charge distributionF0 in the absence of a dielectric medium
is a solution of the Poisson equation in free space

The Green’s function solution for the potential can be written
as

whereG0(r , r ′) satisfies the differential equation

and depends on the boundary conditions of the problem; e.g.,

whereV is the volume of the periodic cell,k ) 2πm, andm )
m1a1

/ + m2a2
/ + m3a3

/ where (a1
/, a2

/, a3
/) are the reciprocal space

lattice vectors and (m1, m2, m3) are integers. Henceforth the
nonperiodic case is considered explicitly with the understanding
that extension to periodic systems can be realized by modifica-
tion of the Green’s function.

In the absence of a polarization response, the electrostatic
potential of eq 2 is

If in addition toF0 there is anelectric dipole polarizationP (it
is indicated below howP arises), the resulting potential is given
by19

Operating on both sides of eq 6 with the Laplacian gives

whereσpol ) -∇‚P is thedipole polarization densityandE )
-∇φ is theelectric field. Theelectric displacementD (consider-

ing only dipole polarization terms from the medium) is defined
by

which leads to the Maxwell relation

In the case that the electric polarization arises as a linear
isotropic response to the total electric field,

whereøe is theelectric susceptibilityof the medium (in the case
of an anisotropic medium this quantity is a tensor). Substitution
of eq 10 into eq 8 gives

where the definition of thestatic dielectric function, ε ) (1 +
4πøe), has been introduced. This leads to the familiar Poisson
equation for a linear isotropic polarizable medium

If the potential is divided into static and polarization components
φ ) φ0 + φpol, whereφ0 satisfies the Poisson equation in free
space (eq 1), eq 12 leads to a differential equation relating the
polarization density and potential,

Equation 13 is a general equation for the polarization density
σpol, which is not necessarily a surface charge density. Integra-
tion of σpol over all space leads to Gauss’ law

where in the last equality it has been assumed that the dielectric
function has a constant valueε2 at infinity (for a nonperiodic
system). Equations 13 and 14 form the basis of the method
presented in section 3.2. The remainder of this subsection
focuses on how the standard boundary element equations,6 which
differ from those of the present work, are derived from eq 13
with certain assumptions.

For a static charge densityF0 that is completely contained in
a closed cavity with unit dielectric; i.e.,F0 ) 0 everywhereε *
1, eq 13, reduces to

∇2
φ0 ) -4π F0 (1)

φ0(r ) ) ∫ G0( r , r ′) F0(r ′) d3 r′ (2)

∇r
2G0(r , r ′) ) -4πδ(r-r ′) (3)

G0(r , r ′) ) { 1

|r - r ′| for nonperiodic systems

4π

V
∑
k)0

∞ eik‚(r-r ′)

k2
for periodic systems

(4)

φ0(r ) ) ∫ F0(r ′)
|r - r ′| d3r′ (5)

φ(r ) ) ∫ ( F0(r ′)
|r - r ′| +

P(r ′)‚(r - r ′)
|r - r ′|3 ) d3r′

) ∫ ( F0(r ′)
|r - r ′| + P(r ′)‚∇r ′ ( 1

|r - r ′|)) d3r′

) ∫ (F0(r ′) - ∇‚P(r ′)
|r - r ′| ) d3r′ (6)

∇2
φ ) -∇‚E ) -4π [F0 - ∇‚P] ) -4π [F0 + σpol] (7)

D ) E + 4πP (8)

∇‚D ) 4π F0 (9)

P ) øe‚E (10)

D ) (1 + 4πøe)E ) εE (11)

∇‚(ε∇φ) ) -4π F0 (12)

∇2
φpol ) -4π F0

1 - ε

ε
- ∇ε

ε
‚∇φ ) -4πσpol (13)

∫ σpol d
3r ) ∫ F0 (1 - ε

ε ) d3r + 1
4π ∫ ∇ε

ε
‚∇ φ d3r

) ∫ F0 (1ε - 1 ) d3r + 1
4π ∫ ∇ (1ε)‚εE d3r

) ∫ F0 (1ε - 1) d3r - 1
4π ∫ (1ε) ∇‚D d3r +

1
4π ∫S)∞ (1ε) D‚n da

) - ∫ F0 d3r + 1
4π ∫S)∞ (1ε) D‚n da

) - (ε2 - 1

ε2
) ∫ F0 d3r (14)

σpol ) 1
4π

∇ε

ε
‚∇φ ) - 1

4π
∇ln(ε)‚E (15)
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In this situationσpol is nonzero only in regions whereε is varying
(e.g., at a dielectric boundary where∇ln(ε) * 0). Equations 13
and 15 can be used to solve forσpol if ∇ln(ε) is finite. If ∇ln(ε)
is not finite, as in the case of a cavity of constant internal
dielectric (ε1 in V1) that changes discontinuously to a bulk value
(ε2 in V2 outside ofV1) at the boundary surface, care must be
taken to ensure the boundary conditions:

wheren21 is the outward unit normal vector pointing from region
1 to region 2, andσ0 is thestatic surface charge densityat the
dielectric boundary (not the induced polarization surface charge
densityσpol), and is normally taken to be zero. The discontinuity
of the dielectric under the boundary conditions of eqs 16 and
17 results in a polarization surface charge density (see Appendix
A)

wherePi is given by

Most boundary elements methods recast eqs 18 abd 19 into
a set of linear algebraic equations that are solved to give the
polarization surface charge vectorσpol.6 The assumptions
inherent in the standard formulation of these methods are that
(1) the charge density is completely contained inside a cavity
of dielectricε1 ) 1 (leading to eq 15), 2) the dielectric changes
abruptly to the external valueε2 at the cavity surface (leading
to eqs 18 and 19), and (3) no static surface charge is considered
(σ0 ) 0).

Substitution of eq 19 into eq 18 under the boundary conditions
of eqs 16 and 17 (withσ0 ) 0) leads to expressions for the
polarization charge density in terms of the dielectric displace-
ment,

In this case, Gauss’ law for the total polarizationsurface
charge(the component of the polarization densityon the caVity
surface) is

whereQ0(V1) is the integrated charge associated withF0 inside
V1. For the case of a cavity of dielectricε1 surrounded by a
conducting medium (ε2 ) ∞), the total surface charge is
-Q0(V1)/ε1. Note that eq 21 involves integrationoVer the caVity
surface whereas eq 14 involves integrationoVer all space.

Equation 21 is equivalent to eq 14 in the case thatε1 ) 1, and
Q0(V1) ) ∫ F0 d3r integrated over all space (i.e.,F0 is completely
contained inV1), in which case from eqs 13 and 15 it can be
seen thatσpol resides only on the cavity surface. The distinction
between eqs 21 and 14 becomes important in numerical
calculations that use constraints on the total surface charge and
in consideration of the generalized model presented in section
3.1.

The strategy of determiningφpol directly fromσpol via eqs 5
and 18-20 is complicated by the fact thatσpol itself depends
on φpol via the electric field; hence, solution of the equations
typically requires an iterative procedure or matrix inversion
process.16

2.2. Variational Principles. In this section several variational
principles are presented that can be used with standard
optimization techniques to solve multidimensional integral-
differential equations that occur in electrostatic problems. In
particular, the variational principle for the solvation models
presented in the next section are derived. For a review of the
calculus of variations, see ref 20.

The general expression for the electrostatic energy of a charge
density in a (nonlinear) dielectric medium is19

If the response of the medium is linear, then

and the electrostatic energy takes the simplified form

For a linear isotropic polarizable medium withD ) εE ) -ε∇φ,
one can construct the functional

whereF0 and ε are functional parameters. The condition that
the functional of eq 25 is stationary with respect to variations
in φ is

and is equivalent to the Poisson differential equation (eq 12).
The second functional variation is given by

This operator is negative forε > 0, since for any functionf
that obeys the boundary conditions of the problem,

The functionalW[φ; F0, ε < 0] is said to beconcaVewith respect
to φ and is amaximumat the stationary point. Forε ) 1, the

(D2 - D1)‚n21 ) 4πσ0 (16)

(E2 - E1) × n21 ) 0 (17)

σpol ) - (P2 - P1)‚n21 (18)

Pi ) (εi - 1

4π ) Ei ) (εi - 1

4πεi
) Di (19)

σpol ) - 1
4π (ε2 - ε1

ε1ε2
) D‚n21 (20)

∫S
σpol da ) - 1

4π ∫S (ε2 - ε1

ε1ε2
) D‚n21 da

) - 1
4π (ε2 - ε1

ε1ε2
) ∫V1

∇‚D d3r

) - (ε2 - ε1

ε1ε2
) ∫V1

F0 d3r

) - (ε2 - ε1

ε1ε2
) Q0(V1) (21)

W ) 1
4π ∫ d3r ∫0

D
E‚δD (22)

∫0

D
E‚δD ) 1

2
E‚D (23)

W ) 1
8π ∫ E‚D d3r ) 1

2∫F0φ d3r (24)

Wφ[φ; F0, ε] ) ∫ F0φ d3r - 1
8π ∫ ∇φ‚ε‚∇φ d3r (25)

δWφ[φ; F0, ε]

δφ(r )
) F0(r ) + 1

4π
∇‚[ε(r )∇φ(r )] ) 0 (26)

δ2Wφ[φ; F0, ε]

δφ(r )φ(r ′)
) 1

4π
∇r ′‚[ε(r ′)∇r ′δ(r - r ′)] (27)

∫∫ f(r )∇r ′‚[ε(r ′)∇r ′δ(r - r ′)]f(r ′) d3r d3r′ )

- ∫∫ f(r )[ε(r ′)∇r ′δ(r - r ′)]∇f(r ′) d3r d3r′ )

- ∫ ε(r )|∇f(r )|2 d3r e 0 (28)
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functional is

and the extremal conditionδWφ/δφ ) 0 leads to the Poisson
equation in free space (eq 1). This is equivalent to the condition
of minimizingthe functional

where theøE
2 notation reflects the analogy to theø2 function

that is minimized in least-square fitting procedures. As will be
discussed later, eq 29 and 30 can be used to variationally expand
densities (or potentials) in an auxiliary basis to solve electrostatic
problems. The functional of eq 30 is a specific case of the more
general functional

that has a stationary point equivalent to that of eqs 12 and 26.
Note that in the above equations the unconstrained variational
parameter is the scalar potentialφ, not the vector fieldE )
-∇φ. Variation of the field would require the additional
constraint∇ × E ) 0 to ensureE corresponds to minus the
gradient of a scalar potential.

It is useful to transform the above functionals into ones that
involve variations in the polarization potentialφpol. Let φ ) φ0

+ φpol, then

The variational conditionsδWφpol/δφpol ) 0 andδøE
2pol/δφpol

) 0 are equivalent to eq 13 for the polarization density. The
effect of minimizing øEpol

2 is analogous to a weighted least-
squares fit of the polarization field with the scaled field-[(ε
- 1)/ε] E0 and weight factorε. It is clear that forε ) 1 there
is no polarization field, and in the limitε ) ∞, Epol and E0

must cancel. The advantage in working with this equation is
that the polarization response can be obtained directly. In
numerical finite difference solutions of the Poisson equation,
frequently two calculations are employed to obtain the polariza-
tion energy (φ andφ0). Recently it has been proposed to apply
the finite difference method directly to the equation for the

polarization potential and avoid calculation ofφ0 and the
associated “self energy”.21 In most boundary element methods,
including the present method, the polarization surface charge
is solved for directly.

Consider the specific case of a cavity ofε1 ) 1 surrounded
by a conductorε2 ) ∞. From eq 33,φpol can be obtained by
minimizing the quantity (Epol + E0)2 outside the cavity and can
be achieved without approximation by constraining the variation
of the polarization density to be on the surface of the cavity (at
the dielectric boundary)if the charge density is completely
contained within the caVity, as seen by eq 15. However, least-
squares minimization of the difference of two electric fields in
eq 30 gives the same stationary condition as maximization of
the functional of eq 29. Hence, a solution for a conductor can
be obtained through maximization of the functionalWφ[φpol; -
F0, ε ) 1] with respect toφpol under theconstraint that the
polarization density occurs only at the cavity surface. The
resulting functional is simply minus theelectrostatic interaction
energyof the polarization surface chargeσpol with the static
charge densityF0 plus theelectrostatic self energyof the former.
Hence, the conductor surface charge density can be derived from
minimization of the total electrostatic energy with respect to
variations of the polarization density on the surface of the cavity.
This forms the basic variational procedure for the conductor-
like screening model.15

3. Solvation Models

In this section solvation models based on the electrostatic
theory and variational principles presented in the previous
section are developed. Discussion is restricted to the electrostatic
component of the solvation energy. The so-called cavitation and
dispersion terms6-8 are not dealt with. The first subsection
introduces the conductor-like screening model that forms the
basis of the model proposed in the second subsection.

3.1. The Conductor-Like Screening Model.The conductor-
like screening model was outlined in the original paper by Klamt
and Schu¨ürmann15 and subsequently further developed and
applied in quantum mechanical calculations.22-31 A compre-
hensive discussion of this model follows, including generaliza-
tion to arbitrary internal (solute) dielectric, constraint conditions
(e.g., Gauss’ law), and analytic gradient requirements.

The ConVentional Conductor-Like Screening Model. The total
electrostatic energy of a charge distribution contained in a cavity
of unit dielectric surrounded by a conductor is given by

where

and

Here σpol is the induced reaction-field surface charge at the
dielectric boundary, andG0(r , r ′) is the appropriate Green’s
function (eq 4) of the Poisson equation in free space for the
boundary conditions of the problem. The conductor surface

Wφ[φ; F0, ε ) 1] ) ∫ F0φ d3r - 1
8π ∫ ∇φ‚∇φ d3r )

∫ F0φ d3r + 1
8π ∫ φ∇2

φ d3r (29)

øE
2[φ; φ0, ε ) 1] ) 1

2∫ (∇φ - ∇φ0)
2 d3r )

1
2∫ (E - E0)

2 d3r (30)

øE
2[φ; φ0, ε] ) 1

2∫ [ε1/2E - ε
-1/2E0]

2 d3r

) 1
2∫ [ε1/2(E - ε

-1E0)]
2 d3r

) 1
2∫ ε(E - ε

-1E0)
2 d3r (31)

Wφpol
[φpol; F0, ε] ) ∫ [F0(1 - ε) +

∇ε‚∇φ0

4π ] ×φpol d
3r

- 1
8π ∫ ∇φpol‚ε‚∇φpol d

3r - 1
8π ∫ ∇φ0‚ε‚∇φ0 d3r (32)

øE
2

pol [φpol; φ0, ε] ) 1
2∫ ε (E0 + Epol - ε

-1E0)
2 d3r

) 1
2∫ ε [Epol + (ε - 1

ε ) E0]2
d3r (33)

W ) 1
2∫∫ (σpol(r ) + F0(r )) G0(r , r ′) (σpol(r ′) +

F0(r ′)) d3r d3r′ ) E0 + Epol (34)

E0 ) 1
2∫∫ F0(r )G0(r , r ′)F0(r ′) d3r d3r′ (35)

Epol ) 1
2∫∫ σpol(r ) G0(r , r ′) σpol(r ′) d3r d3r′ +

∫∫ σpol(r ) G0(r , r ′) F0(r ′) d3r d3r′ (36)

Smooth Solvation Potential J. Phys. Chem. A, Vol. 103, No. 50, 199911063



charge distributionσpol is a solution of the variational condition

Thus, the conductor surface charge distribution minimizes the
total electrostatic energy; i.e., there is no energetic penalty
beyond the normal Coulomb self-energy of the surface charge
associated with polarizing a conductor (ε ) ∞). The particularly
simple conductor variational condition is the basis of the
conductor-like screening model. For a finite external dielectric
ε2, the model scales the energy, gradient, and surface charge
distribution by a factorf(ε2) ) (ε2 - 1)/(ε2 + x) wherex is a
parameter between 0 and 2, chosen here to be 0 in accord with
Gauss’ law (eq 14). This introduces an error (relative to the
exact solution of the dielectric problem) of the order (ε2

-1)15

that is small for high dielectric media such as water (ε2 ≈ 80).
Scaling the conductor surface charge is equivalent to minimiza-
tion of a modified energy functional where the surface charge
self-energy term of eq 34 is scaled by a factor 1/f(ε2). The factor
f(ε2) insures that the polarization surface charge satisfies Gauss’
law for an exact solution of theVariational conditionof eq 37
(this point is further addressed in the discussion of constraints).
The differential equation that arises from eq 37 is transformed
into an algebraic equation by the introduction ofM basis
functions for the representation of the surface chargeσpol and
N basis functions for the solute charge densityF0

whereσpol is anM × 1 vector containing the coefficients for
the expansion of the polarization surface charge density,G0 is
andN × 1 vector for expansion of the solute charge density,O0

) C‚G0 is theN × 1 static potential vector, andA0, B, andC
are M × M, M × N and N × N matrices, respectively, that
define Coulomb interactions between the vectors, andA ) A0/
f(ε2). The variational condition is

and has solution

where the superscript onσpol
/ indicates the polarization surface

charge that minimizes the energy. Substitution of eq 41 into eq
39 and addition ofE0 in eq 38 leads to a compact solution in
terms of the Green’s function:

and

The above solution is particularly convenient for quantum
mechanical calculations since the Green’s functionG ) G0 +
Gpol ) C - BT‚A-1‚B can be computed once at the beginning
of the self-consistent field (SCF) procedure where it enters as
a modification to the Hamiltonian matrix elements. The calcula-
tion of the Green’s function involves the inverse of theA matrix
that has dimensionsM × M, whereM is the number of surface
elements, and scales asO(M3) asM becomes large. This is not
a serious limitation for conventional quantum mechanical
calculations that scale as the cube of the number of electrons
(and hence system size) due to the orthonormality constraints
on the molecular orbitals. The orthonormality conditions are
typically enforced in the canonical Hartree-Fock and Kohn-
Sham equations by solving a generalized eigenvalue/eigenvector
problemat each iteration of the SCF procedure. Inversion of a
symmetric positive definite matrix via, for example, a Cholesky
decomposition, is much faster than diagonalization of a similar
matrix of the same dimensions.32 For very large systems,
however, conventional quantum mechanical methods are not
feasible, and it is necessary to employ “linear-scaling” electronic
structure methods designed to circumvent the cubic scaling
bottleneck of conventional methods (see ref 33 and references
therein). In this case, the Green’s function solution of eq 43 is
also intractable, and one must devise methods that avoid
construction and inversion of the fullA matrix. One such method
utilizes a preconditioned conjugate gradient technique to directly
minimize eq 39 with electrostatic interactions calculated using
a linear-scaling recursive bisection multipole expansion method.26

Generalization to Arbitrary Internal Dielectric. The original
conductor-like screening model considered the case of an
internal unit dielectric. Here, the procedure is generalized to
arbitrary internal dielectricε1.

From eq 13, the polarization charge density can be broken
into two terms

The first term,σpol
V ) F0(1 - ε)/ε, is finite everywhereF0 is

finite andε * 1 (the superscript “V” implies “volume”). The
second term,σpol

S ) (1/4π)∇ln(ε)‚∇φ, is finite only in the
region of the dielectric boundary (the superscript “S” implies
“surface”). Under the standard assumption of most boundary
element methods,σpol

V is taken to vanish. However, this
restriction is not mandatory. The potential due toF0 and σpol

V

together is the solution of the free space Poisson equation for
the modified density

In the case of a charge densityF0 contained in a cavity of
constant internal dielectricε1, Feff takes the form of a scaled
density that can be expanded in the same basis asF0. Extension
to cases where the dielectric is more complicated in the region
of F0 is possible, but for simplicity is not detailed here.

To facilitate the development, a more general scale factor
than f(ε2) is introduced based on eq 21 for the polarization
surface charge density,

Note thatf(1, ε2) ) f(ε2) defined earlier. The development is
analogous to that of the previous section, with theA matrix

σpol ) F0
1 - ε

ε
+ 1

4π
∇ε

ε
‚∇φ ) σpol

V + σpol
S (44)

Feff ) F0 + σpol
V )

F0

ε
(45)

f(ε1, ε2) )
ε2 - ε1

ε1ε2
(46)

δW
δσpol(r )

)
δEpol

δσpol(r )
) 0 (37)

E0 ) 1
2

G0
T‚C‚G0 ) 1

2
G0

T‚O0 (38)

Epol ) 1
f(ε2)

1
2

σpol
T ‚A0‚σpol + σpol

T ‚B‚G0

) 1
2

σpol
T ‚A‚σpol + σpol

T ‚B‚G0 (39)

δEpol

δσpol
) A‚σpol + B‚G0 ) 0 (40)

σpol
/ ) - A-1‚B‚G0 (41)

E ) 1
2

G0
T‚(C-BT‚A-1‚B)‚G0 ) 1

2
G0

T‚G‚G0 (42)

Epol ) 1
2

G0
T‚(-BT‚A-1‚B)‚G0 ) 1

2
G0

T‚Gpol‚G0 (43)
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defined asA ) A0/f(ε1, ε2), and the static potential in eq 38
replaced byOeff ) B‚Geff ) (1/ε1)O0. The equation for the surface
component of the polarization density obtained from the
variational procedure is

and the corresponding Green’s functions analogous to eqs 42
and 43, are

and

This model obtains the exact result in the limitε1 ) ε2 and
reduces to the conventional model presented earlier forε1 ) 1
(eqs 42 and 43) that in principle is exact whenε2 ) ∞.
Moreover, the equations (if solved exactly) satisfy Gauss’ law
(eq 14) for anyε1 andε2.

An alternative to modeling the solute polarizability as a
continuum dielectric is to employ an explicit polarizable solute
model. One possibility that is currently being explored is to
couple the solvation potential with the chemical potential
equalization method34 to model the solute polarizability.

Use of Constraints. The set of linear equations (eqs 38-43)
uses surface element basis functions for the expansion of the
polarization surface charge. Since this basis set is not complete
in practice, the solution of the corresponding differential
equation is approximate. Of primary concern is that the solution
may not exactly satisfy constraint conditions such as Gauss’
law (eq 21). More generally, the exact conductor surface charge
should cancelall the multipole moments of the solute outside
the cavity in order that the total field vanishes (see eq 33). In
the case of quantum calculations where the tails of the electronic
density extend outside the cavity, the integrated polarization
density on the surface is not the total integrated polarization
density (compare eqs 14 and 21). Consequently, it is sometimes
desirable to normalize the total surface charge to be the
integrated polarization charge (including the contribution outside
the surface). More detailed discussions of the problem of
outlying charge have been discussed elsewhere.6,28,35,36 It is
possible in the present approach to incorporate some of these
conditions by imposing a set of linear constraints and performing
a constrained variation of the surface charge density with the
method of Lagrange multipliers. The general form of the
equations are given in Appendix B. The result is that a constraint
modification is added to the unconstrained surface charge
density, and the corresponding correction to the energy can be
expressed as the electrostatic self-energy of the surface charge
correction, or alternately as a positive quadratic term involving
the vector of Lagrange multipliers. In the limit that the surface
elements become complete, the Lagrange multipliers and
corresponding constraint penalty vanish.

An alternate procedure that has been suggested is to scale
the approximate surface charge by the factorΣ/Σ̃, whereΣ is
the theoretical value57 of the total surface charge determined
by Gauss’ law, andΣ̃ is the actual computed value.17,18 There
are two main problems with this approach: (1) it breaks down
in the limit Σ or Σ̃ go to zero (since this implies scaling by
zero or infinity), e.g., (for any neutral charge distribution) and

(2) analytic derivatives of the scale factor with respect to atomic
positions (required for forces) and with respect to the static
charge density (required in the Fock or Kohn-Sham Hamilto-
nian operators, see Appendix B) are not straightforward. The
first problem can be avoided in the case of quantum calculations
by separation of the total charge density into nuclear and
electronic components. The polarization response for each
density can be calculated and renormalized individually and
subsequently combined to obtain the total polarization response.
A drawback of this approach is that two large polarization
responses are calculated that to a large extent cancel one another.
This procedure could lead to numerical errors that are not size
consistent when applied to very large systems, such as can now
be addressed with linear-scaling electronic structure methods.

The use of explicit constraints in the variational procedure
overcomes these difficulties (Appendix B). It is not clear
whether inclusion of explicit physical constraints in the varia-
tional procedure (such as Gauss’ law) necessarily leads to
improved results for other properties such as the surface element
basis becomes more complete, the variational energy is sys-
tematically lowered. Since the constrained variational procedure
imposes a quadratic penalty on the total energy that vanishes
in the limit that the surface element basis becomes complete,
the convergence of the energy with respect to the basis is
retarded by such constraints. Moreover, the potential that enters
the Fock or Kohn-Sham Hamiltonian operators isnot simply
the electrostatic potential of the constrained surface charge
density, but contains an additional term that is linear in the vector
of Lagrange multipliers (Appendix B). A modified functional
that avoids these difficulties can be constructed, but only at the
cost of sacrificing the variational relationship with the polariza-
tion surface charge. This point is further discussed in section
4.

Gradients. An advantage of the conductor-like screening
model (and other boundary element methods) over finite-
difference methods for solution of the Poisson or Poisson-
Boltzmann equation is that gradients for the former can be
computed without recourse to mapping transformations from a
three-dimensional grid.37 Calculation of gradients for boundary
element solvation methods in quantum mechanical applications
have been discussed extensively in the literature.15,16,38-41 The
purpose here is to outline the general procedure and then focus
on some subtleties of the surface element derivatives that make
an analytic treatment difficult. In the following section a new
analytic solvation method is proposed that overcomes these
difficulties.

The expression for the gradient of the solvent polarization
energy for “fixed” charge distributions (G0 * G0(Ri), e.g., (a set
of atom-centered point charges that can move in space, but with
magnitudes that are constant) follows from eqs 39, 40, and 43,

σpol
S* ) - f(ε1, ε2) A0

-1‚B‚G0 (47)

G(ε1, ε2) ) (1
ε1

) C - f(ε1, ε2) BT‚A0
-1‚B (48)

Gpol(ε1, ε2) ) (1 - ε1

ε1
) C - f(ε1, ε2) BT‚A0

-1‚B (49)

∇iEpol ) [∂Epol

∂σpol
]

σpol
/

‚
∂σpol

/

∂Ri
+ 1

2
σpol
/T ‚∂A

∂Ri
‚σpol

/ + σpol
/T ‚∂B

∂Ri
‚G0 +

[∂Epol

∂G ]G0

‚
∂G0

∂Ri

) 1
2

σpol
/T ‚∂A

∂Ri
‚σpol

/ + σpol
/T ‚∂B

∂Ri
‚G0

) 1
2

G0
T‚

∂Gpol

∂Ri
‚G0 (50)
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where

The derivative term with respect toσpol in eq 50 vanishes due
to the variational condition of eq 37, and the derivative term
with respect toG0 vanishes due to the fixed charge density
assumption. In the more general case of a quantum mechanically
derived charge density, the gradient with respect to thetotal
energy E) EQM[F0] + Epol[F0], whereEQM[F0] is the quantum
mechanical energy functional in terms of the electron density
F0, andEpol[F0] is the solvation energy functional of eq 43, can
be written formally as

The first two terms make up the Hellmann-Feynman term
associated with the total energy. The last term in eq 52 that
involves a partial derivative with respect to the electron density
that vanishes if the Hellmann-Feynman theorem is strictly
obeyed. This is the case for “fixed” charge distributions (e.g.,
a charge vector that is independent of particle positions),
empirical density-functional based methods such as chemical
potential equalization,34 and quantum methods that use basis
functions that are independent of the atomic coordinates (i.e.,
do not require Pulay corrections) or in the limit that the basis
set for the expansion of the wave function becomes complete.
This can be illustrated by identifying the quantum mechanical
chemical potential58 µ for systems constrained to a fixed number
of electrons with the last energy derivative on the right-hand
side of eq 52, which leads to

Gradient corrections for non Hellmann-Feynman forces have
been described extensively in the literature.42 The purpose here
is to present the full derivatives of theA andB matrixes in eq
50, and show that approximate derivative expressions that are
used almost universally with conventional boundary element
solvation methods contain singularities due to discontinuities
in the solvation potential.

If the dependence of the surface elements on the atomic
positions is neglected, the term involving theA matrix in eq
50 drops out, resulting in afixed caVity approximation:

where the partial derivative of theB matrix contains only terms
that involve explicitly the atomic positions (no cavity terms).
Calculation of the gradient contribution due to the cavity requires
an analytic expressions for theA andB matrix elements in terms
of the atomic positions. This is often not straightforward since,
for example, the diagonalA matrix elements that typically
depend on the area associated with individual surface elements
are complicated functions of geometry in the region of atomic
overlap. As regions of the surface become exposed or buried,
new surface elements emerge or vanish and cause the dimen-
sions of theA andB matrixes themselves to change discontinu-
ously. A detailed discussion of the requirements for a smooth
solvation potential are presented in Appendix C. The next
section introduces a new method that retains the simplicity of

the conductor-like screening model while satisfying the require-
ments for a smooth solvation potential.

3.2. A Smooth Solvation Potential.In this section, a simple
analytic solvation model is proposed that overcomes many of
the difficulties associated with other surface element methods.
The model uses the solvent accessible surface (Figure 1) to
define the boundary between the solute and solvent so that
evaluation of derivatives with respect to surface element
positions is simplified (Appendix C). The problem of Coulomb
singularities is overcome by the use of spherical Gaussian
functions of the form

to model surface element interactions. The electrostatic interac-
tion between two surface element Gaussians with exponentsúi

andúj, respectively, centered at positionsr i andr j, is given by

whereú′ij ) úiúj/xúi
2+új

2 andrij ) |r i - r j|. Each atomic sphere
is discretized into a set of surface elements according to the
points and weights used in high-order angular quadrature
schemes for spherical harmonics. This forms a natural basis for
expansion of the solvent reaction-field (polarization) potential
and affords significant flexibility in choosing the level of
discretization. The model is calibrated by adjustment of the
Gaussian exponents to obtain the exact Born solvation energy

∂Gpol

∂Ri
) BT‚A-1‚∂A

∂Ri
‚A-1‚B - (BT‚A‚∂B
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+ ∂BT
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∇iE )
∂EQM
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∂Ri
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∫ [ ∂E
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∂Ri

‚G0 (54)

Figure 1. Definition of different molecular surfaces (thick lines): (a)
van der Waals surface (vdWS), (b) solvent accessible surface (SAS),
and (c) solvent excluded surface (SES).
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and a uniform charge distribution for spherical ions. The matrix
equations are further modified by a transformation involving a
switching operation on the inverse diagonalA matrix elements
that allows the effect of surface elements on the energy to be
smoothly switched on or off as they become exposed or buried
in a manner that maintains linearity of the algebraic equations.

Discretization of the Atomic Spheres. The high-order angular
numerical quadrature schemes with octahedral symmetry for
spherical harmonic functions described by Delley43 were used
as a basis for discretization of the atomic spheres into surface
elements. The numerical quadrature schemes provide a set of
M points{r̂ k} (assumed on the unit sphere) and weights{wk}
that allow integrals of functions to be approximated by

where∫ dΩ ) ∫0
2π dφ ∫0

π sin(θ) dθ. The quadrature schemes
are chosen such that the above integral is “exact” (to machine
precision) if the angular functionf(r̂ ) can be represented by an
expansion in spherical harmonic functions up to a given order
2lmax + 1. Hence, the numerical quadrature schemes of a given
order satisfy theL1 norm conditions for 0e l e 2lmax + 1; that
is,

andL2 orthonormality conditions for 0e l, l′ e lmax

Spherical harmonic expansions have been used routinely for
the solution of electrostatic problems since they are eigenfunc-
tions of the angular part of the Laplacian operator in spherical
polar coordinates. High-order numerical integration schemes
have been extremely valuable in the solution of the Poisson
equation in density-functional calculations.44,45 In Gaussian-
based density-functional methods, the electron density is often
expanded in an auxiliary set of Gaussian functions to ap-
proximately solve for the electrostatic potential.46 A variational
procedure for accomplishing this involves extremizing (maxi-
mizing) the functional of eq 29.47 This and related functionals
have been used extensively to variationally “fit” electron
densities in density-functional calculations,46 determine atomic
“charges” in molecules,48 and numerically solve the Poisson
and Poisson-Boltzmann equations.49 As discussed in section
2.2, the variational procedure given by eq 29 is equivalent to
the conductor variational procedure (eqs 34-37) with the
restriction that the polarization density occurs only at the surface,
and the electrostatic energy is minimized instead of maximized.
The surface elements that are used as basis functions in the
variational procedure should be chosen to give an accurate
representation of the multipole expansion of the solute potential
outside the cavity. For this purpose, the spherical harmonic
angular quadrature schemes are particularly well suited. Angular
quadrature schemes with octahedral symmetry are used with
number of points/sphere ranging from 14 to 1202, corresponding
to lmax ) 2 to 29, respectively.43 For each set of quadrature
points r̂ k of a given orderlmax on the unit sphere, the Gaussian

exponentsúk were chosen to obtain the exact Born solvation
energy for a conductor, and to closely reproduce a “uniform”
charge distribution on the surface. The latter implies that the
surface element chargesσk on r̂ k resulting from the variational
procedure for a spherical ion of chargeQ equal the correspond-
ing normalized quadrature weights; i.e.,

Initially, the Gaussian exponents that produced, to within
machine precision, the Born energy and uniform charge
distribution were obtained by solving a set of nonlinear equations
with an iterative procedure. However, it was found that the
Gaussian exponents can be well approximated by

where ú is a parameter. For a given quadrature scheme, the
parameterú is adjusted to obtain the exact Born solvation
energy, and with the above relation between the Gaussian
exponents and quadrature weights (eq 61), results in a nearly
uniform surface charge distribution (Table 1). Relations between
the Born solvation energy and Gaussian exponents are derived
in Appendix D using a simple analytic model. It is shown with
the analytic model that the Gaussian exponent that gives the
exact Born solvation energy varies as the square root of the
number of surface elements (eq D-8). If it is assumed that the
quadrature weights vary roughly inversely with the number of
surface elements, it is expected thatú in eq 61 is roughly
constant for different quadrature schemes. The values ofú in
Table 1 range from 4.85 to 4.91, suggesting that the analytic
model provides a useful qualitative description (see Appendix
D for more detail). For spheres of radiusR, the Gaussian
exponents obey the scaling relationúk(R) ) úk(1)/R that
preserves the Born energy and uniform surface charge distribu-
tion. Consequently, the exponents for any radius are determined
simply from the angular quadrature weights and tabulated values
of ú.

Construction of an Analytic SolVation Potential. The Gaussian
exponentsúk and positionsr k form the basis functions for the
polarization surface charge, and are used to construct the matrix
elements of eqs 39-43. The diagonal elements of theA matrix

∫0

2π
dφ ∫0

π
f(r̂ )sin(θ) dθ ) ∫ f(r̂ ) dΩ ≈ ∑

k

M

f(r̂ k)wk (57)

∫ Yl,m(r̂ ) dΩ ) ∑
k

M

Yl,m(r̂ k)wk ) x4π δl,0 (58)

∫ Yl,m(r̂ )Yl′,m′(r̂ ) dΩ ) ∑
k

M

Yl,m(r̂ k) Yl′,m′ (r̂ k) wk )

δl,l′δm,m′ (59)

TABLE 1: Gaussian Exponents for a Unit Sphere at
Different Discretization Levelsa

no. of points lmax 2lmax + 1 ú σrms

14 2 5 4.865 8.9× 10-4

26 3 7 4.855 6.9× 10-3

50 5 11 4.893 3.5× 10-3

110 8 17 4.901 3.8× 10-3

194 11 23 4.903 2.4× 10-3

302 14 29 4.905 1.9× 10-3

434 17 35 4.906 1.2× 10-3

590 20 41 4.905 2.7× 10-3

770 23 47 4.899 5.6× 10-3

974 26 53 4.907 5.9× 10-3

1202 29 59 4.907 4.5× 10-4

a Optimized values ofú defined in eq 61 that give the exact Born
ion energy are shown for angular quadrature schemes designated by
lmax defined in eqs 58 and 59. The relative deviationσrms is defined as

σrms ) x〈(σpol
/ -σexact)

2〉/〈σexact
2 〉 where σpol

/ is the calculated surface
charge vector,σexact is the “exact” surface charge vector defined as
σexact) -w/4π, andw is the vector of angular quadrature weights for
a given discretization level. Note that, as the number of points increases,
the denominator〈σexact

2 〉 decreases such that the relative deviation is
fairly constant. The minimum linear correlation coefficient between
σpol
/ andσexact is 0.99998 for the 26 point scheme.

σk ) -Qwk/4π (60)

úk ) ú/xwk (61)
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represent self-energy terms of the surface elements and are
analogous to the basis function “hardness” in the method of
chemical potential equalization.34 These elements impose a
quadratic energy penalty associated with polarizing a particular
surface element. As the diagonalA matrix elements go to
infinity (become infinitely “hard”), no polarization occurs, and
the associated basis function expansion coefficients go to zero.

This result is exploited to construct an analytic potential that
allows surface elements to appear and disappear smoothly with
changes in molecular geometry while maintaining the linearity
of the algebraic equations. In some senseall of the surface
element basis functions associated with each atomic sphere are
considered (whether buried or on the surface), and the value of
the diagonal elements of theA matrix are a function of the
overlap with other atomic spheres. The diagonal elements are
equal to the normal (calibrated) values on the solvent accessible
surface and go quickly but smoothly to infinity in regions of
overlap with other atomic radii as surface elements become
buried. It is shown below that if the diagonal elements go to
infinity, the associated off-diagonal matrix elements do not
contribute to the energy and it becomes rigorous to exclude them
in the algebraic equations, and thus reduce the dimensionality
of the problem and greatly increase computational efficiency.

Consider a system ofN atomsi ) 1, ...N, with atomic radii
Ri. The discretized solvent accessible surface is constructed by
translating a unit sphere ofM elementsr̂ k, k ) 1, ...M to each
atomic center and dilating the sphere to the radiusRi. Thus, the
position of thekth surface point on atomi is r ik ) Ri + Rir̂ k. A
supermatrix notation is used here such that the subscript “ik”
together designates a single index for vector and matrix elements
associated with thekth surface point of theith atom; e.g., the
diagonal element of theA matrix is denotedAik,ik (the indices
k and l are used for the surface elements associated with a
particular atom designated by the indicesi or j).

For a smooth representation of the solvation energy and
surface charges, it is necessary to introduce basis functions
(surface elements) continuously as changes in geometry bury
or expose new regions of the solvent accessible surface. This
is affected by scaling the basis function self-energies from their
calibrated values on the surface of the cavity rapidly but
smoothly to infinity as they enter the cavity. This is realized
by introduction of a “switching region” (Figure 2) of thickness
Rswj, formed by two concentric shells on either side of thejth
atomic sphere with radiusRj such that

whereRj is a parameter between 0 and 1. The switching function
that is used is given by

and has the endpoint conditions

where Swf
(n) (r) ) ∂n Swf/∂rn. The off-diagonal A0 matrix

elements in the model represent electrostatic interactions
between the spherical Gaussian basis functions for expansion
of the polarization surface charge, and the diagonal matrix
elements represent scaled (for purposes of smoothness as

Figure 2. Smooth surface area model for a diatomic molecule.

Figure 3. Dependence of the solvation energy on the Gaussian
exponents. The figure plots the quantityE(γ)/EBORN versusγ for a
spherical ion at several discretization levels, whereE(γ) is the solvation
energy obtained with the set of scaled Gaussian exponentsú′ ) ú/γ,
and ú is the calibrated value (at each discretization level) that gives
the exact Born ion energy. Shown are (a) values calculated with the
conductor variational procedure using the atomic surface discretization
schemes given in Table 1, and (b) values predicted from the analytic
model derived in Appendix A.
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discussed above) self-energies and have the form

where

Theú parameter in eq 69 for each discretization level (quadra-
ture scheme) are listed in Table 1. The value ofSwf(r̂ ik,j) in eq
70 varies between 0 and 1 and reflects the degree to which the
ikth surface element (thekth surface element on the discretized
atomic sphere of atomi) has been switched off or on,
respectively, by overlap with all the other atoms. The switching
function Swf(r̂ ik,j) is nonzero only for values ofr̂ ik,j between 0
and 1 (see eq 64), which indicates the degree to which theikth
surface element has penetrated the switching layer of atomj.

The B matrix elements represent electrostatic interactions
between basis functions for the solute charge densityF0 and
basis functions for the polarization surface charge density. If a
point charge basis for the solute charge density is used (such
as those used in conventional molecular mechanics force fields),
the B matrix elements have the form

The above expression for the matrix elements differ from those
presented in other works that model the surface elements by
point charges.15,22,26The gradients corresponding to eqs 66-
72 are given by

where

and

Equation 67 above involves scaling the diagonal elements ofA
by a factor that varies between 1 and∞, and it is not immediately
evident that this allows surface element basis functions to appear
smoothly with respect to the energy. The problem can be
reformulated in a way that avoids the singularity at the inner
shell boundary.

Consider partitioning theA matrix (with scaled diagonal
elements) into diagonal and off diagonal parts:

and

The above expression forA-1 does not contain singularities
(unlike A) since it depends only on the inverse of the scaled
diagonal elements eq 67. Since the surface charge and energy
(eqs 41 and 43) rely onA-1 and not onA explicitly, these
quantities can be evaluated by eq 79 without singularity
problems. This expression, however, is not ideal for computa-
tion, since evaluation ofA-1 requires inversion of an unsym-
metric matrix (1 + Adiag

-1 ‚Aoff). It is advantageous to retain
matrixes that are symmetric and positive definite to allow stable
and efficient numerical solution of the associated linear equation
via, for example, symmetric matrix inversion from a Cholesky
decomposition (instead of general matrix inversion) for small
matrixes, or conjugate gradient methods (instead of biconjugate
methods) for direct minimization.32 Thus the above equations
are rewritten in the symmetric form:

It is clear from the above equations that the effect of the
transformationAdiag

-1/2‚(...)‚Adiag
-1/2 is to create a null space for

matrix elements corresponding toAdiag ) ∞; i.e., this operation
zeros out all rows and columns corresponding to (Adiag

-1/2)ik,ik )
0. Consequently, the dimensionality of the problem can be
reduced without approximation to that of surface element basis
functions having nonzero scale factorsSik. Moreover, the only
appearance of the scaled diagonal elements occurs in the form
of Adiag

-1/2 which have positive semidefinite values, and the
transformed matrix (Adiag

-1/2‚Aoff‚Adiag
-1/2) that has elements

bounded by 0 and 1.

The solution for the polarization surface charge can be
rewritten in the transformed reduced dimensional space as

(A0)ik,jl )
erf(ú′ik,jl|r ik - r jl|)

|r ik - r jl|
(66)

(A0)ik,ik )
úik

x2π
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-1 (67)
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where

and the (untransformed) surface charge is recovered by

Clearly the charge of a surface elementik is zero if (Adiag
-1/2)ik,ik

) 0.
Switching Parameters. The problem of discontinuities in the

solvation potential as new surface elements vanish or emerge
is remedied in the present model by the introduction of a
switching region defined by concentric shells on either side of
the van der Waals radius (Figure 2). The radii that bound the
switching region,Rin andRout defined in eqs 62 and 63, contain
two parameters: the thickness of the switching regionRsw, and
a shift parameterR that determines where shells are located
with respect to the van der Waals shell.

The switching layer thicknessRswi for a particular atomi is
chosen to be proportional to its van der Waals radiusRi. It is
further required that the proportionality constant be bounded
from above by 1 to insure thatRswi does not exceedRi. In the
limit that the number of surface elements becomes infinite, the
discontinuities associated with appearance of new surface
elements vanish, and no switching is necessary. For a finite
number of surface elements, a switching region is necessary
for the potential to be smooth. The thickness of the switching
region is defined to be an empirical relation

whereγS is the degree of switching,Ri is the atomic radius of
atom i, andM is the number of points/sphere (determined by
the discretization level). Equation 86 forRswi allows the level
of switching to be attenuated by adjusting the value ofγS

between zero (no switching) and 1 (“full” switching) such that
full switching at the lowest discretization level considered (M
) 14) gives a switching radius equal to the atomic radius of
that atom. The definition ofγS is such that at full switching the
switching radius will never exceed the radius of the atom itself.

Several empirical forms for the parameterR were derived
from analytic two-body models and tested. The results indicate
that as long as the switching region is fairly small compared to
the atomic radii, the optimal choice forR is very nearly1/2 (the
symmetric switch is centered at the atomic radius). A slightly
modified form forR is proposed here that is inspired by a simple
surface area model (see Appendix E). The result is

whereRswi is given in eq 86. The parameterR is independent
of geometry and other atomic radii. The smooth model surface
area can be computed as

wherewik is thekth angular quadrature weight on atomi, and
Sik is the switching matrix defined in eq 70.

4. Numerical Tests

The following sections provide numerical tests of the
proposed solvation model. In the first section, the smoothness
of the potential is examined in the case of two separating ions.
In the second section, the accuracy and convergence of the
method are compared and the magnitude of the energy variations
with regard to coordinate rotation is addressed. In the third
section, results are presented for the solvation energy along the
reaction coordinate of the hydrolysis of ethylene sulfate.

4.1. Smoothness of the Potential.The smoothness of the
solvation potential with respect to changes in geometry is
examined for the case of two oppositely charged ions with unit
radii as they are separated along thez axis. The smoothness of
the potential is affected by (1) the discretization level of the
atomic spheres, (2) the occurrence of Coulomb singularities in
the potential caused by overlapping surface elements modeled
by point charges, and (3) discontinuities that arise from new
surface elements that suddenly appear as the ions separate.
Figure 4 compares the affects of each of these factors on the
solvation energy curves.

For the point-charge model (Figure 4a), singularities in the
potential are evident at low and medium discretization levels
(26 and 50 points/sphere). Corresponding singularities in the
gradient curves are more pronounced, and persist even at high
discretization levels (302 points/sphere) where they correspond
to jumps in energy of up to a few kcal/mol. The main source
of the singularities in the gradient is the Coulomb singularity
that occurs when two surface elements on different spheres are
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Figure 4. Smoothness of the solvation potential. Curves are shown at
several atomic sphere discretization levels for two ions with unit radii
and oppositely signed unit charges as they separate along thez axis.
(a) Point-chargemodel: interactions between surface elements are
modeled by point-charge interactions. (b)Gaussianmodel: interactions
between surface elements are modeled by Gaussian interactions (see
text). c) Gaussian/smoothmodel: same as b) with the addition that
surface elements appear smoothly by switching on the diagonal self-
interactions (γS ) 1, see text). The top row shows the relative solvation
energyE (kcal/mol, shifted for clarity) as a function of separation
distanceR, and the middle and bottom rows include the corresponding
gradient curves (kcal/mol‚Å) below the horizontal zero axis. Gradients
were computed by finite differences (dE/dR ) ∆E/∆Rwith ∆R ) 0.01
Å) to depict graphically the relative area associated with each
singularity.
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nearly superimposed. The corresponding off-diagonalA matrix
elements become unstable and can result in a singular matrix.
These errors can make a positive or negative contribution to
the gradient, and in some instances cause it to transiently change
sign. This results in an artificial attractive well in the solvation
energy curve that should be monotonic in the present example.
Figure 4b illustrates the effect of replacing the point-charge
surface element interaction model with the proposed Gaussian
model. No singularities in the potential occur and the solvation
energy curves are greatly improved even at low discretization
levels. This is in part due to the relation between the Gaussian
exponents and quadrature weights (eq 61) that result in the
former being roughly proportional to the square root of the
number of surface elements/atomic sphere (Appendix D); i.e.,
as the number of surface elements decrease, the Gaussian
functions become more diffuse and result in smoother interac-
tions at short range. However, in the absense of smoothing,
singularities in the gradient that correspond to discontinuities
in the solvation energy remain, especially at low discretization
levels (26 points/sphere). These singularities arise from the
sudden appearance of new surface elements as the ions separate.
The nature of the singularity is to cause a discontinuous decrease
in the solvation energy.59 Figure 4c shows the effect of smoothly
turning on new surface elements with the proposed method (γS

) 1 in eq 86). Even at low discretization levels the gradients
are smooth.

Figure 5 compares the solvation energy gradients as a function
of separation distance for several discretization and smoothing
levels. In the case of no smoothing (γS ) 0), the gradients have
singularities due to discontinuities in the potential as described
above. At medium and full smoothing (γS ) 0.5 and 1,
respectively) the gradients are smooth for all discretization

levels. These features are important for gradient-based geometry
optimizations, transition-state searches, and molecular dynamics
simulations.

4.2. Accuracy and Convergence.In this section the accuracy
and convergence of the proposed method with respect to the
surface discretization level is examined, modified functionals
that obey physical constraint conditions are presented, and the
problem of rotational variance is discussed.

Table 2 lists the solvation energy, total surface charge, and
surface area (eq 88) at smoothing levelsγS )0, 0.5, and 1 for
the pentacovalent transition state intermediate in the hydrolysis
reaction of ethylene sulfate, [ES-OH-]* (ref 50). At low,
medium, high, and very high discretization levels (14-26, 50-
110, 302-590, and 1202 points/sphere) the relative error in the
solvation energy is typically less than 1%, 0.5%, 0.2%, and
0.05%, respectively. Accuracy sufficient for most chemical
applications (less than 1 kcal/mol) is obtained with relatively
low discretization levels; however, convergence to higher
accuracy is rather slow. It is possible that further refinement of
the model, such as modification of the switching scheme in eq
68, may offer improvement. Figure 6 illustrates the convergence
of the solvation energy with respect to the discretization level
for several molecules at various levels of switchingγS ) 0,
0.5, and 1. The figure supports the main conclusions derived
from Table 2 with regard to the magnitude and convergence of
errors. The convergence of the relative errors is more uniform
with smoothing.

The exact conductor solution (i.e., in the surface element basis
set limit) obeys Gauss’ law (eq 21). For the discretization levels
considered here, the error in the total surface charge is very
small (Table 2). With no smoothing, agreement with Gauss’
law is extremely good, with relative errors of approximately

Figure 5. Solvation gradient curves (kcal/mol‚Å) for separating ions
at different discretization and smoothing levels. Discretization levels
range from 26 points/atomic sphere (top) to 302 points/atomic sphere
(bottom). Gradient curves are shown with no smoothing (γS ) 0, thin
solid line), intermediate smoothing (γS ) 0.5, thin dotted line), and
full smoothing (γS ) 1, thick solid line). The second column shows a
magnified view of the range bracketed by dotted lines in the first
column.

Figure 6. Accuracy and convergence of the solvation energy. The first
column plots the solvation energyE (kcal/mol) as a function ofM ,
the number of surface elements/atomic sphere; the second column shows
the relative error (estimated relative to a discretization level of 5000
points/atomic sphere) as a function ofM1/2 (M1/2 is related to the average
distance between surface elements). Curves corresponding to smoothing
levelsγS ) 0 (thin solid line),γS ) 0.5 (thin dotted line), andγS ) 1
(thick solid line) are shown for the transition state intermediate in the
nucleophilic attack on ethylene sulfate by a hydroxide ion [ES-OH-]*
(top), the neutral amino acid asparagine, and the negatively charged
guanine 5′ nucleotide phosphate.
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0.1%, 0.05%, 0.005%, and 0.001% for low, medium, high, and
very high discretization levels, respectively. For the smooth
models, errors are slightly larger, especially at the low discreti-
zation levels that have larger switching regions (Rswj in eq 86).

One can insure that Gauss’ law is obeyed by application of
constraints in the energy variation with the method of Lagrange
multipliers. Alternately, nonvariational functionals can be
constructed that have the constraints built in (see Appendix B).

Table 3 compares the energies resulting from each of these
procedures. There are almost negligible difference between the
energies from the unconstrained and constrained variational
functionals, the latter always bounded from above by the former.
This is consistent with the previous observation that Gauss’ law
is very nearly satisfied in the absence of constraints. The
nonvariational functionalE′pol(λ) results in energies that are
comparable to the corresponding unconstrained energies in the

TABLE 2: Convergence of Solvation Properties with Discretization Level for [ES-OH-]* a

no. or points Epol error Q error SA error

γS ) 0
14 -71.666 (-0.343) 1.003 (2.6× 10-3) 164.649 (-14.233)
26 -72.034 (0.025) 1.001 (1.0× 10-3) 159.524 (-9.108)
50 -71.609 (-0.401) 0.999 (6.0× 10-4) 154.305 (-3.889)

110 -71.699 (-0.310) 1.000 (2.6× 10-4) 149.754 (0.662)
194 -71.874 (-0.135) 1.000 (2.0× 10-5) 151.267 (-0.851)
302 -71.972 (-0.037) 1.000 (5.0× 10-5) 151.466 (-1.050)
434 -72.010 (0.001) 1.000 (4.0× 10-5) 150.914 (-0.498)
590 -71.918 (-0.091) 1.000 (3.0× 10-5) 149.951 (0.465)
770 -71.946 (-0.064) 1.000 (1.0× 10-5) 150.208 (0.208)
974 -71.983 (-0.026) 1.000 (2.0× 10-5) 150.394 (0.022)

1202 -71.994 (-0.015) 1.000 (0.0× 10**) 150.635 (-0.219)

γS ) 0.5
14 -70.286 (-1.723) 0.998 (2.2× 10-3) 154.305 (-3.889)
26 -71.359 (-0.650) 0.998 (1.6× 10-3) 149.411 (1.005)
50 -71.408 (-0.601) 0.998 (1.7× 10-3) 150.043 (0.373)

110 -71.675 (-0.334) 1.000 (4.7× 10-4) 149.584 (0.832)
194 -71.858 (-0.151) 1.000 (1.2× 10-4) 151.256 (-0.840)
302 -71.883 (-0.126) 1.000 (1.5× 10-4) 150.346 (0.070)
434 -71.931 (-0.078) 1.000 (9.0× 10-5) 150.514 (-0.098)
590 -71.934 (-0.075) 1.000 (5.0× 10-5) 150.261 (0.155)
770 -71.948 (-0.061) 1.000 (3.0× 10-5) 150.329 (0.087)
974 -71.973 (-0.037) 1.000 (3.0× 10-5) 150.348 (0.068)

1202 -71.987 (-0.022) 1.000 (2.0× 10-5) 150.629 (-0.213)

γS ) 1
14 -70.429 (-1.580) 0.992 (8.3× 10-3) 145.166 (5.250)
26 -71.617 (-0.392) 0.996 (3.8× 10-3) 145.414 (5.002)
50 -71.736 (-0.273) 0.997 (2.9× 10-3) 147.046 (3.370)

110 -71.904 (-0.105) 0.999 (9.6× 10-4) 148.621 (1.795)
194 -71.952 (-0.057) 1.000 (3.6× 10-4) 150.065 (0.351)
302 -71.943 (-0.066) 1.000 (2.6× 10-4) 149.751 (0.665)
434 -71.952 (-0.058) 1.000 (1.6× 10-4) 150.100 (0.316)
590 -71.954 (-0.055) 1.000 (1.0× 10-4) 150.133 (0.283)
770 -71.967 (-0.042) 1.000 (8.0× 10-5) 150.240 (0.176)
974 -71.978 (-0.031) 1.000 (6.0× 10-5) 150.244 (0.172)

1202 -71.989 (-0.020) 1.000 (5.0× 10-5) 150.387 (0.029)

a Solvation energyEpol (kcal/mol), total surface chargeQ (au), and surface area SA (Å2). Corresponding errors are shown in parentheses. Errors
were estimated relative to a discretization level of 5000 points/atomic sphere. Smoothing levels are indicated byγS values (see text).

TABLE 3: Comparison of Unconstrained, Constrained, and Nonvariational Functionalsa

no. of points Epol(0) error Epol(λ) error E′pol(λ) error

γS ) 0
26 -72.034 (0.025) -72.034 (0.025) -71.984 (0.026)
50 -71.609 (0.401) -71.609 (0.401) -71.639 (0.371)

110 -71.699 (0.310) -71.699 (0.310) -71.712 (0.297)
302 -71.972 (0.037) -71.972 (0.037) -71.974 (0.035)

γS ) 0.5
26 -71.359 (0.650) -71.359 (0.650) -71.438 (0.572)
50 -71.408 (0.601) -71.408 (0.601) -71.494 (0.515)

110 -71.675 (0.334) -71.675 (0.334) -71.699 (0.311)
302 -71.883 (0.126) -71.883 (0.126) -71.891 (0.119)

γS ) 1
26 -71.617 (0.392) -71.616 (0.393) -71.810 (0.119)
50 -71.736 (0.273) -71.735 (0.274) -71.882 (0.127)

110 -71.904 (0.105) -71.904 (0.105) -71.953 (0.057)
302 -71.943 (0.066) -71.943 (0.066) -71.956 (0.053)

a Solvation energy (kcal/mol) calculated from different functionals: the unconstrained functionalEpol(0) of eq B-3, the constrained functional
Epol(λ) of eq B-6, and the nonvariational constrained functionalE′pol(λ) of eq B-8. Corresponding errors are shown in parentheses. Errors were
estimated relative to a discretization level of 5000 points/atomic sphere. Smoothing levels are indicated byγS values (see text).
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case of no smoothing (γS ) 0), whereas in the case of full
smoothing (γS ) 1) the functional leads to considerable
improvement at low discretization levels, reducing the error by
roughly a factor of 2. Further testing and comparisons are needed
before one can conclude thatE′pol(λ) is a better solvation
energy functional than the unconstrained variational functional.

Numerical methods that utilize surface elements or 3-dimen-
sional grids are subject to “basis set” related errors. In particular,
if the basis functions used to expand the solvation potential are
not rotationally invariant, the solvation energy varies when the
system is rigidly rotated. Table 4 compares the magnitude of
the rotational root-mean-square deviation (rmsD) of the solvation
energy, total surface charge, and surface area for [ES-OH-]*
at several discretization levels. The rotational rmsD provides
statistical information that compliments the absolute errors given
in Tables 2 and 3. The rotational rmsD measures the fluctuation
of a quantity for many orientations whereas the absolute error
measures the error in the basis set limit for a single orientation.
The rotational energy rmsD is typically lower than the absolute
error of Table 2. Moreover, the rotational energy rmsD in the
full smoothing model (γS ) 1) is about a factor of 2-4 smaller
than in the model with no smoothing (γS ) 0). The rotational
rmsD of the total surface charge at each discretization level is
similar for all smoothing levels, and comparable in magnitude
to the Gauss’ law error in Table 2 with no smoothing. The
rotational rmsD of the surface area is reduced by a factor of 2
with full smoothing relative to no smoothing, and the magnitude
is significantly less than the error in Table 2. Overall, the
magnitude of rotational rmsD for the solvation energy, total
surface charge, and surface area are less than the corresponding
basis set errors, and decrease with smoothing so that the
rotational variance is not expected to be a dominant error in
calculations.

4.3. Application to Sulfate Hydrolysis.Solvent stabilization
plays an important role in reaction dynamics in solution.
Quantum mechanical calculations at reliable basis set levels are
currently too time-consuming to include many solvent molecules
in routine transition state optimizations. Consequently, these
calculations are typically performed in the gas phase and
subsequently corrected to account for an approximate solvation
effect.6,50 Alternately, one can include the solvation potential
directly in the electronic Hamiltonian and introduce solvent
effects self-consistently. For an explicit solvent representation,
the latter procedure is more reasonable.

The present solvation model is not yet integrated into a
quantum mechanical electronic structure package, so that self-
consistent results are not yet available. To assess the magnitude
of errors in a real chemical application of the present model,
the energy surface of the hydrolysis reaction of ethylene sulfate
was studied. Density-functional results for the gas-phase charge
density along the reaction coordinate50 were used as input to
calculate the solvation energy correction to the reaction profile
with the present model. Figures 7 and 8 compare the gas phase
and solvent corrected energy surfaces for the nucleophilic attack
by OH- on ethylene sulfate.50 Only the electrostatic component
of the solvation energy is considered. The overall solvation effect
is to stabilize the separated reactants relative to the complex.
The system has a net (-1) charge that in the reactant state
resides on the hydroxide ion, and hence it is not surprising that
the most solvent exposed conformations (corresponding to large
separation distances) have the largest solvent stabilization. This
contrasts with cases where both reactants have the same sign
charge, such as a hydroxide ion attacking a negatively charged
phosphate, for which the transition state is preferentially
stabilized by the solvent.60

TABLE 4: Rotational Variance a

no. of points 〈Epol〉 〈δEpol〉 E* 〈Q〉 〈δQ〉 〈SA〉 〈δSA〉
γS ) 0

26 -71.266 (0.445) 2.200 0.999 (1.4× 10-3) 150.775 (3.690)
50 -71.548 (0.199) 1.030 0.999 (6.1× 10-4) 150.207 (2.460)

110 -71.758 (0.107) 0.541 1.000 (1.1× 10-4) 150.454 (1.470)
302 -71.919 (0.038) 0.232 1.000 (3.9× 10-5) 150.547 (0.763)

γS ) 0.5
26 -71.134 (0.229) 1.050 0.996 (1.2× 10-3) 148.899 (1.970)
50 -71.471 (0.101) 0.599 0.999 (4.8× 10-4) 149.553 (1.230)

110 -71.699 (0.058) 0.356 1.000 (1.2× 10-4) 150.027 (0.862)
302 -71.887 (0.021) 0.110 1.000 (2.4× 10-5) 150.357 (0.424)

γS ) 1
26 -71.389 (0.138) 0.620 0.995 (1.0× 10-3) 144.813 (0.897)
50 -71.778 (0.066) 0.368 0.998 (3.8× 10-4) 147.210 (0.547)

110 -71.911 (0.032) 0.181 0.999 (9.2× 10-5) 148.872 (0.374)
302 -71.946 (0.010) 0.054 1.000 (1.8× 10-5) 149.881 (0.175)

a Rotational variance was computed by sampling Euler rotations in 36° intervals. Bracketed quantities indicate average values of the solvation
energyEpol (kcal/mol), total surface chargeQ (au), and surface area SA (Å2). Corresponding root-mean-square deviations are indicated by〈δ...〉.
The “energy barrier”E* (kcal/mol) is the difference between the maximum and minimum sampled energy values. Smoothing levels are indicated
by γS values (see text).

Figure 7. Potential energy surfaces for OH- attack on ethylene sulfate
at different levels of smoothing. Curves at several discretization levels
(26, 50, 110, and 302 points/atomic sphere, corresponding to solid,
dotted, dashed, and thick solid lines, respectively) are shown for
smoothing levelsγS ) 0 (no smoothing, top), andγS ) 1 (full
smoothing, bottom).
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Figure 7 compares the solvation curves at different discreti-
zation levels (26, 50, 110, and 302 points/sphere) at smoothing
levelsγS ) 0 and 1. WithγS ) 0, the curves are irregular at
the lower discretization levels (26 and 50 points/sphere). With
γS ) 1, the curves are very smooth. The maximum difference
between the curves occurs for the separated reactants where the
total energies are-4.6, -5.3, -5.3, and-5.5 kcal/mol for
discretization levels of 26, 50, 110, and 302 points/sphere,
respectively. Figure 8 illustrates the effect of smoothing (γS )
0, 0.5, and 1) for high and low discretization levels (26 and
302 points/sphere). At low discretization level and no smoothing,
variations in the energy surface of around 2 kcal/mol occur as
the OH- and ethylene sulfate separate. At intermediate and full
smoothing (γS ) 0.5 and 1), these variations are negligible. At
high discretization level, the effect of smoothing is much less
dramatic; i.e., all the curves are well behaved and almost
indistinguishable. The curve corresponding toγS ) 0 exhibits
minor variations as the reactants separate on the order of 0.1
kcal/mol. Overall, these results demonstrate that the present
method improves the reaction profile in solution relative to that
of a discontinuous solvation potential, especially at a low
discretization level, and provide results that are within the
accuracy range (0.1-1 kcal/mol) required of most chemical
applications.

5. Conclusion

A new solvation model based on the conductor-like screening
model has been introduced. The solvation energy of the model
is smooth with continuous analytic derivatives; it contains no
singularities and involves the solution of a set of linear
equations. The model uses a solvent accessible surface for the
cavity representation and smooth Gaussian basis functions to
expand the reaction-field surface charge density and model
Coulomb interactions between surface elements. Discretization
of atomic surface elements is based on high-order angular
quadrature schemes for spherical harmonics. The Gaussian
exponents of the surface elements are calibrated to reproduce
the exact Born energy for spherical ions and a uniform
polarization surface charge density. Tests of the method
demonstrate that it is accurate in describing the dielectric
response of a conductor, and with a simple correction can be

extended to model finite dielectric materials such as liquid water
with reasonable accuracy. Extensions of the method to incor-
porate variational constraints and to model smooth surface areas
have been presented, as well as the generalization to arbitrary
internal dielectric constants. It is anticipated that once integrated
with quantum mechanical or molecular mechanical programs,
the model will be an effective tool for the description of
molecules in solution.
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Appendix A

Polarization Charge Density at a Dielectric Discontinuity.
In this appendix the limiting behavior of a surface charge density
arising from a dielectric discontinuity under the boundary
conditions of eqs 16 and 17 is addressed; i.e., the connection
between eqs 13 and 20 is formed in this limit. The definition
of the electric displacement in a linear isotropic (dipole)
polarizable medium is

The polarizationP can be expressed in terms of the dielectric
function and electric displacement as

from which the polarization charge density becomes

This equation is equivalent to eq 13 derived previously. Consider
the case of a dielectric function that varies rapidly but continu-
ously fromε1 in region 1 toε2 in region 2 across a boundary
layer of thickness∆x ) x2 - x1 in the directionn21 normal to
the layer. If the variation in the dielectric across the boundary
is linear, then

with corresponding gradient

Figure 8. Potential energy surfaces for OH- attack on ethylene sulfate
at different atomic sphere discretization levels. Curves at several levels
of smoothing (γS ) 0, 0.5, and 1, corresponding to solid, dotted, and
thick solid lines, respectively) are shown for discretization levels of
26 points/atomic sphere (top) and 302 points/atomic sphere (bottom).
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Using eqs A-4 and A-5, the terms involvingε in eq A-3 are
given by

The integrated polarization charge through the boundary layer
(along the normal directionn21) is

If the static charge densityF0 contains no explicit surface charge
densityσ0 at the dielectric boundary, i.e., it is smooth in this
region, then the normal component of the electric displacement
is also smooth since it satisfies the Maxwell relation eq 9. In
the limit the boundary layer thickness goes to zero, bothD‚n21

andF0 are constant and can be taken out of the integral, leading
to

which is identical to the expression of eq 20.

Appendix B

Constrained Variations. Consider the set ofNc constraint
conditions on the surface charge of the form

whereσpol andG0 areM × 1 andN × 1 vectors representing
the polarization surface charge and static charge densities (see
section 3.1), respectively,D, Z, andy have dimensionsM ×
Nc, Nc × N, and Nc × 1, respectively, and define theNc

constraint conditions such that theith constraint is given by∑j

Djiσpolj ) yi. It is assumed that the constraint values are linear
functions of the static density; i.e.,y ) Z‚G0. For example, the
Gauss’ law constraint on the total surface charge, assuming the
surface and static charge densities are expanded in a basis of
L1 normalized functions, corresponds toNc ) 1, Di,1 ) 1, and

Z1,i ) -1 (which impliesy1 ) -Q0). The constrained variational
condition is

where

with solution

and

where the matrixesQ ) DT‚A-1‚D andR ) (Z + DT‚A-1‚B)
have been introduced,σ*(0) ) -A-1‚B‚G0 is the unconstrained
surface charge vector, andδσpol

/ (λ) ) A-1‚D‚λ is the constraint
correction. Substituting this expression into the energy equation
leads to

whereGpol(λ) ) Gpol(0) + δGpol(λ) is the Green’s function of
the constrained variational procedure,Gpol(0) ) -BT‚A-1‚B is
the unconstrained Green’s function (underscored by the zero
argument) of eq 43, andδGpol(λ) ) RT‚Q-1‚R is the constraint
correction. It is clear from the above equation that the energy
of the constrained solution is equal to the unconstrained solution
(eq 43) plus a positive quadratic term involving the vector of
Lagrange multipliersλ. This term is equal to the electrostatic
self-energy of the constraint surface charge correctionδσpol

/ (λ).
In the limit that the surface elements become complete, the
Lagrange multipliers and corresponding constraint penalty
vanish.

It is noteworthy to discuss some implications of using the
constrained variational functional of eq B-6. It might be argued
that this functional is favorable since it results in a surface charge
vector that rigorously satisfies the constraint conditions (such
as Gauss’ law, for example), and consequently the reaction field
that is produced may be more realistic in terms of affecting a
polarization response in the solute. However, this isnot
necessarilythe case. In quantum mechanical calculations where
the polarization of the solute is itself determined from a
variational principle, the reaction field potential that enters the
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/ (λ) ) -A-1‚(B‚G0 - D‚λ) ) σpol

/ (0) + δσpol
/ (λ) (B-4)

λ ) (DT‚A-1‚D)-1‚(Z + DT‚A-1‚B)‚G0

) Q-1‚R‚G0 (B-5)

Epol(λ) ) 1
2

σpol
/ (0)T‚B‚G0 + 1

2
δσpol

/ (λ)T‚A‚δσpol
/ (λ)

) Epol(0) + 1
2

λT‚Q‚λ

) 1
2

G0
T‚[Gpol(0) + δGpol(λ)]‚G0 )

1
2

G0
T‚Gpol(λ)‚G0 (B-6)
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Fock or Kohn-Sham Hamiltonian operators is defined (in the
basis ofG0) by

In the above equation, the quantitiesBT‚σpol represent the
electrostatic potential of the surface charge densityσpol. The
reaction field potential of the constrained variational energy
functional is equal to the electrostatic potential of the resulting
surface charge densityσpol

/ (λ) plus the constraint termZT‚λ.
Consequently, the potential that enters the Fock or Kohn-Sham
Hamiltonian operators is the electrostatic potential of the surface
chargeonly in the absence of constraints; i.e., λ ) 0.

Alternately, one can consider the modified energy functional

whereG′pol(λ) ) - BT‚A-1‚B′ andB′ ) B - D‚Q-1‚R. This
functional produces the reaction field potential

that is the electrostatic potential of the constrained polarization
surface charge vectorσpol

/ (λ). Unlike the functionalEpol(λ) of
eq B-6, the modified energyE′pol(λ) is not related by a
variational principle to the surface charge vectorσpol

/ (λ). At
low surface discretization levels, it is observed that the functional
E′pol(λ) often provides energies closer to the “exact” energy in
the basis set limit than eitherEpol(0) or Epol(λ).

Appendix C

Continuous Gradients for Solvation Potentials.The pur-
pose of this appendix is to discuss the requirements for a
boundary element solvation potential to be smooth; i.e., have
continuous, nonsingular derivatives with respect to the atomic
positions. These conditions are essential for the stability of
numerical procedures such as geometry optimizations, transition
state searches, and molecular dynamics calculations. Almost
universally, conventional boundary element methods do not
satisfy these requirements.

The derivatives with respect to theA andB matrixes of eqs
39-43 depend on the definition of the surface that defines the
dielectric boundary. Three types of surfaces are most commonly
employed (Figure 1). TheVan der Waals surfaceis the closed
surface that encapsulates the volume created by overlapping
atom-centered van der Waals spheres. ThesolVent accessible
surfaceis the surface created by the center of a solvent probe
that makes contact everywhere on the outside of the van der
Waals surface. For water, the radius is typically taken to be 1.4

Å. The van der Waals and solvent accessible surfaces are
mathematically identical in their construction.61 The solvent
excluded surface is generated by the contact of the surface of
the solvent probe with the van der Waals surface.

The van der Waals and solvent accessible surfaces have the
advantage that evaluation of many of the derivative terms is
straightforward since the position of each surface element is
related to a unique atom position by a fixed translation (although
the surface element area and its associated derivatives are more
complicated, as discussed below). A disadvantage of the these
surfaces is that surface elements centered on adjacent atoms
can overlap, and Coulomb interactions modeled by point charge
interactions between surface elements can diverge. A suggested
method to counter this problem is to excise surface elements in
the grooves formed by overlapping spheres that results in
separated patches of atomic surface area.15 The solvent excluded
surface, on the other hand, is smooth and avoids many of the
problems of overlapping surface elements; however, the map-
ping between elements and atomic positions is significantly more
complicated, and the derivatives are correspondingly more
involved.14

An analytic mapping between surface element positions and
atomic positions is a necessary but not sufficient condition to
ensure that the solvation potential is smooth and has continuous,
nonsingular derivatives. Conformational changes can cause new
regions of the molecule to become exposed to solvent or buried,
and consequently new surface elements to appear or disappear
in the equations for the solvation energy.62 Consequently, an
additional requirement for a smooth solvation potential is that
new surface elements enter or exit the expansion of the
polarization surface charge density smoothly with respect to the
energy. As will be shown in the next section (eq 81), a sufficient
condition to satisfy the smoothness criteria is that the magnitude
of the inverse diagonalA matrix elements (or the analogous
matrix elements in other boundary element methods) vanish
smoothly when a new surface element enters the expansion of
the polarization surface charge density. This behaviorcan be
accommodated by a model in which the diagonal matrix
elements vary inversely with the area of the corresponding
surface element. There are two practical difficulties with this
strategy: (1)The calculation of surface element areas and their
deriVatiVes is complicated and computationally expensiVe. An
exact analytic representation ofatomic surface areasusing the
Gauss-Bonnet theorem for a solvent accessible surface is
considerably costly, and has prompted the development of more
efficient approximate methods.51 The case of calculation of the
area of indiVidual surface elements(modeled by curved
polyhedra) is more difficult than for atomic surface areas, and
extension to solvent excluded surfaces is more difficult still.
Considerable effort and progress has been made to derive
expressions for surface element areas and their derivatives for
certain types of surface elements (sometimes referred to as
tesserae)14 for use in boundary element solvation methods.18

These expressions were derived for agiVen set of tesserae
generated from a numericaltessellation procedurefor partition-
ing the molecular surface into surface elements. (2)The
tessellation procedure used to determine the surface elements
must be smooth. In order for the solvation potential to be a
smooth analytic function, thetessellation procedure must
proceed in a manner such that the area of each tessera can vanish
and appear smoothly. The optimal partition scheme in terms of
efficiency52 is not necessarily smooth, since this would force
many tesserae to have relatively small area. In light of these
difficulties, a frequently employed approximation is to neglect

vRF )
δEpol(λ)

δG0

) Gpol(λ)‚G0

) BT‚σpol
/ (0) + (BT + ZT‚Q-1‚DT)‚δσpol

/ (λ)

) BT‚σpol
/ (λ) + ZT‚λ (B-7)

E′pol(λ) ) 1
2

G0
T‚BT‚σpol

/ (λ)

) - 1
2

G0
T‚BT‚A-1‚B′‚G0

) 1
2

G0
T‚G′pol(λ)‚G0 (B-8)

vRF )
δE′pol

δG0
) G′pol(λ)‚G0 ) BT‚σpol

/ (λ) (B-9)
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entirely the derivative contribution from the surface element
areas (e.g., the diagonalA matrix elements).16 Although the
conductor-like screening model has been used in the present
discussion to outline difficulties associated with constructing
an analytic boundary element solvation potential, the problem
is directly analogous and equally relevant in other boundary
element methods such as the polarizable continuum model.16

In the following section, a relatively simple scheme that
overcomes these difficulties is presented. The remainder of this
section provides a brief description of gradient calculations with
other (non boundary-element) solvation methods.

The problem of defining surface element derivatives does not
arise in methods based on the generalized Born equation,3,7,12,53

finite difference or finite element solution of the Poisson-
Boltzmann equation, or in higher level integral equation
theories.4,5 Hence, the definition and calculation of a smooth
solvation potential is less problematic for these methods. The
solvation potential in methods based on the generalized Born
equation has the form of an effective analytic pairwise potential.
These models are practical and effective for many applications,7

but it is not yet clear how they perform in applications to very
large molecules. For grid-based solutions of the Poisson-
Boltzmann equation, the “surface” at the dielectric discontinuity
in boundary element methods is replaced by a smooth dielectric
function defined, for example, as

where â ) 1/kBT, kB is the Boltzmann constant,T is the
temperature, and theui(r) are atomic energy-like functions that
define the volume exclusion functionH(r ; {Ri}).37 The smooth-
ness of the dielectric implies the polarization density occupies
a volume in regions of changing dielectric (eq 13). The
Poisson-Boltzmann equation is a highly approximate and
computationally efficient example of a more general class of
integral equationmethods.5 Methods based on integral equation
theory of solutions take into account the exclusion of solvent
from the solute volume with an exponential term in the solvent
probability distribution function,

whereW(r ) is the potential of mean force. In the region where
solute and solvent particles overlap,W(r ) goes to infinity, and
the solvent probability goes to zero. These higher level theories
are powerful techniques for describing solvation properties;
however, the solution of the integral equations is much more
difficult and expensive to compute for large systems in three
dimensions than are boundary element methods. A strategy
similar to that of eq C-2 could be adopted in a boundary element
framework; however, it is desirable to maintain the advantage
of the linearity of the equations and the use of simple Coulomb
interactions for which efficient linear-scaling methods exist.

Simple continuum solvation models can in principle offer an
alternate strategy to the application of more expensive integral
equation theories or explicit simulation of the full solvent
environment. The former methods are very useful in the regime
where the electrostatic effects of the external environment are
well approximated by a dielectric continuum. A recent paper
has suggested that estimations of the free energy of solvation
derived fromanyof several continuum models are comparable
for a given parametric fit; the most important factor relating to
whether the molecule forms a hydrogen bond or not.54 A strategy

in the case of large biomolecules where structural water plays
an important role is to treat explicitly the ordered solvent layers,
and model the region outside by a dielectric continuum.55 The
construction of hybrid potentials that model different parts of a
large system with different levels of theory has been successful
in many areas of computational chemistry.

Appendix D

Dependence of Born Energy on Gaussian Exponents.In
this appendix a model is derived that provides analytic equations
for the relationship between the Gaussian exponentsúk, the
number of discretized surface pointsM, and the scaled Born
energyEBorn(γ) ) (γ/2)Q2/R.

In the present method, the solvation of a spherical ion of
chargeQ and radiusR is modeled by a set ofM spherical
Gaussian functions at discretized points on the surface. These
Gaussian functions serve as basis functions for the induced
reaction-field surface charge, which is determined as a solution
to the variational condition for the energy (eq 37). The matrix
solution (eq 41) requires computation of the inverse of theA
matrix that contains the Gaussian-Gaussian Coulomb interac-
tions between surface elements and hence depends on the
number of Gaussian functions and their placement on the
surface, as well as on their exponents. It is not difficult to solve
numerically for the Gaussian exponents that give the exact Born
solvation energy and uniform charge density; however, for the
purposes of discussion, it is instructive to derive analytic
equations for a simple model that captures the essential features
of the applied method.

Consider a spherical model ofM surface elements. For a unit
sphere with a chargeQ at its center, a representative surface
element is modeled by the surface arc that is excised by a cutting
plane perpendicular to thezaxis corresponding to the polar angle
0 e θ e θ0. If the remainder of the sphere has a uniform surface
charge densityσpol/4π, the potential at the center of the surface
element (θ ) 0) due to the surface charge is given by

and the surface area is

If the sphere is discretized intoM surface elements, the area of
each element is 4π/M. Substitution into the above equation for
the surface area givesθ0 for a given number of surface elements
M per sphere:

and the expression forφ0 above can be written in terms ofM
as

The self-energy of each surface element is taken to be the
Coulomb self-energy of a Gaussian charge density with

φ0(σpol, θ0) ) ∫0

2π ∫θ0

π σpol/4π

2 sin(θ/2)
sin(θ) dθ dφ )

σpol - σpol sin (θ0/2) (D-1)

Area(θ0) ) ∫0

2π ∫0

θ0 sin(θ) dθ dφ ) 2π[1 - cos(θ0)] )

4π sin2(θ0/2) (D-2)

θ0(M) ) 2sin-1(1/xM) (D-3)

φ0(σpol, M) ) σpol - σpol/xM (D-4)

ε(r ) ) ε1 + (ε2 - ε1) exp [- ∑
i

âui(r - Ri)] )

ε1 + (ε2 - ε1) H(r ; {Ri}) (C-1)

P(r ) ∼ e-âW(r ) (C-2)
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exponent ú; i.e., Eself ) (1/2)úx2/π. This allows energy
expression to be written as

Solution of the variational conditionδE/δσpol ) 0 leads to

and energy

The value ofσpol
/ , and hence the energyE(σpol

/ ), depends on the
number of surface pointsM and Gaussian exponentú. For a
given value ofM, the total energy is required to be equal to the
Born solvation energy for a conductorE(σpol

/ (ú)) ) -Q2/2.
The solution is

With this choice ofú, the surface chargeσpol
/ (ú) ) -Q is in

accord with Gauss’ law (eq 21). The above equations establish
relationships between the total energyE, the Gaussian exponents
ú, and the number of surface elementsM. In particular, it allows
us to assess how sensitiveE is with respect to variations inú
for a given value ofM. This can be quantified by looking at
the ratio of the scaled energyE(γ) ) E(σpol

/ (ú/γ)) resulting
from division ofú by a factorγ with the corresponding unscaled
valueE(1) ) EBorn,

This quantity is plotted as a function ofγ in Figure 3b for several
values of M. The results follow very closely the observed
dependence of the Gaussian exponents shown in Figure 3a. As
the number of surface elements increases, the quantity in eq
D-9 becomes less sensitive to variations inú, and in the limit
M f ∞, the scaled energy is exactly the Born solvation energy
for any γ > 0.

Appendix E

Smooth Surface Area Model.In this appendix a simple
smooth surface area model is proposed based on a discretized
solvent accessible surface and the smoothing scheme introduced
in the main text. In particular a formula for the shift parameter
R is derived that shifts the center of the switching region relative
to the atomic radius (Figure 2).

For a diatomic system consisting of atoms 1 and 2 on thez
axis, consider the surface area of atom 2 that lies within the
switching region of atom 1 (SA˜2 in Figure 2); i.e., between the
outer switching radiusRout1 and the atomic radiusR1 (since the
exact surface area does not penetrateR1). This region of surface
area on atom 2 is

where integration is in spherical polar coordinates around atom
2, andθ0 andθout are given by

The integral centered on atom 2 can be transformed into an
integral centered on atom 1 that can be computed analytically,

In the present model, the “surface area” is defined to include
integration of the switching function in the switching region so
that the surface area is a smooth function even for a discretized
surface. This is desirable if one chooses to include empirical
energy terms such as cavitation and dispersion terms that are
functions of the surface area. The expression for the surface
area of atom 2 in the present model is

whereSwf(r) is the switching function defined in eq 64. If it is
required that the surface area of eq E-5 equals the exact surface
area of eq E-4 for a diatomic system, an equation is obtained
that can be solved for the parameterR. The result is

where (from eq 86) 1/γ ) R1/Rsw1, andâ is a parameter that
depends on the form of the switching function that in the present
case (eq 64) is equal to (2x7)-1. Note that the parameterR1 by
this definition is independent of the radiusR2 and separation
distanceR12 and hence can be evaluated uniquely for each atom
(instead of each atom pair) and does not contribute to gradient
terms. Although it is possible that one might derive an improved
form for theR parameters, for the present examples, this simple
description is adequate and amenable to facile implementation
and efficient calculation. Moreover, the importance of theR
parameters become less significant at higher surface discreti-
zation levels where theRsw values become smaller. Conse-
quently, increasing the discretization level allows a systematic
means of obtaining a more accurate solution.
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