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The development of a smooth solvation potential from which analytic derivatives can be derived is important
for molecular applications that require geometry optimization and conformational sampling. Derivatives in
conventional boundary element solvation methods are typically treated approximately, and contain singularities
that arise from discontinuities in the potential. We present a simple smooth solvation potential that is based
on the conductor-like screening model proposed by Klamt andiBetann (Klamt, A.; Schirmann, G.J.

Chem. Soc., Perkin. Trans, 2993 799). The model uses a simple solvent accessible surface with an atomic
sphere discretization based on high-order angular quadrature schemes for spherical harmonics. Surface elements
are modeled by spherical Gaussian functions with exponents calibrated to obtain the exact Born ion energy
and uniform surface charge density and to avoid Coulomb singularities present in conventional point-charge
surface element models. The set of linear equations are modified to prodigmrausly smootrsolvation
potential by allowing the effect of new surface elements to be turned on or off over a finite switching region
around each atom. Numerical tests of the method are provided, in addition to discussions of rotational variance,
generalization to arbitrary internal dielectric, use of constraints, and extension to a smooth surface area model.

1. Introduction For a solvation model to be useful in calculations such as
geometry optimization, transition state searches, and molecular
dynamics simulations, it must yield a potential with continuous

complexity from explicit simulation of many solvent molecules first derivatives \fY'th resp:e_ct o the nuclegr positions. In what
to implicit models that provide an approximate mean field follows, the term “smooth” is used to describe such a potetttial.

picture of the bulk solvent. The spectrum of methods that have These conditions are not rigorously fulfilled in most boundary
evolved and that are routinely applied involve a balance of €lement methods due to the difficulty in defining an analytic
accuracy and computational effort. Explicit simulation of the functional form for the surface elements from which gradients
solvent environment provides a detailed description of solvation. can be derived. The literature is often misleading in claiming
However, this type of treatment is very costly and frequently derivation of analytic derivatives of solvation potentials when,
requires a high degree of configurational sampling to determine in fact, the solvation potentials contain discontinuities that cause
equilibrium properties. Implicit models based on a dielectric gradients to become singular. The most common instance of
continuum approximation are orders of magnitude more ef- this involves the neglect of derivatives with respect to the area
ficient. However, they usually provide less accuracy and do not of individual surface elements that leads to the so-called “fixed
give explicit dynamical infqrmation .about the solvent dggrees cavity” approximation. Expressions have been derived for
of freedqm. Integral equation theor!e_s offer an e_llterna_twe that surface element derivatives for givéessellationof the mo-
helps bridge the gap between explicit solvent simulations and lecular surface that improves the smoothness of the potéfitial.

simple continuum treatments of solvatidrin certain cases, However, the singularity problem persists if the tessellation
hybrid methods that combine a hierarchy of theoretical levels T 9 y P P . -
procedure itself is not a smooth function of the atomic

may be the best compromise between reliability and computa- . o )
coordinates (which is typically the case). Moreover, other

tional feasibility. R . . A
There are many instances where simple continuum Sowaﬁondlﬁlcultles can arise such as Coulomb singularities in methods

models are usefi:8 For problems that involve very large that model surface elements by point chaigs;® and the
molecules or require many evaluation of the solvation energy, neglect of derivatives with respect to scaling factors that enforce
alternative higher level approaches are not tractable. Continuumsurface charge normalization in accord with Gauss’ 1a¥.
solvation models have been particularly useful for the calculation | this paper, an analytic solvation potential based on the

of electrostat;(i fields and solvation free energies 221'5"“96 conductor-like screening modelis introduced that has the
biomolecules;?*titration curves, andif, shifts in proteing;>°: oy . . )

. . . . advantages that it)(is a smooth analytic function of the atomic
solvation effects in quantum mechanical calculatibhsion- ositions, ff) uses a simple solvent accessible surfaiig |ses
equilibrium solvation energi€’d,and the stability of peptides P p d L bp d | d T
and proteins in molecular simulations of folding eveits surgce |§cret|zat|on .ase on angg ar qua ratu.re rubgs, (

avoids point-charge singularities with a Gaussian surface
T Present address: Department of Chemistry, University of Minnesota, element model, _and_’l IS Cal'br"f‘ted to (_)bta'n t_he exact Born
Minneapolis, MN 55455, energy for spherical ions. The first section outlines the relevant
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Solvation has a profound effect on the behavior of bio-
molecules—3 Theoretical treatments of solvatibmange in
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electrostatic theory and presents variational relations used foring only dipole polarization terms from the medium) is defined
solving numerical electrostatic problems of the type considered by
here. The second section describes the conductor-like screening

model and presents the new approach. The third section provides D=E+ 4P (8)
numerical tests of the accuracy and convergence of the model. ‘which leads to the Maxwell relation

The appendices contain several useful extensions and gener-

alizations of the theory and methods. V+D = 47 p, (9)

2. Theory

2.1. Electrostatics.The electrostatic potentiato due to a
fixed charge distributiomo in the absence of a dielectric medium
is a solution of the Poisson equation in free space

In the case that the electric polarization arises as a linear
isotropic response to the total electric field,
P=y.-E (20)

wherey. is theelectric susceptibilityf the medium (in the case

Vo = —4T p, 1) _ \ _ ; e o>
of an anisotropic medium this quantity is a tensor). Substitution
The Green’s function solution for the potential can be written of eq 10 into eq 8 gives
as = (1+ 4y )E = ¢E (11)
— I I 3 I
Po(r) = f Go( 1, 1) po(r') dr 2 where the definition of thatatic dielectric functione = (1 +
. o . . . 4mtye), has been introduced. This leads to the familiar Poisson
whereGo(r, 1) satisfies the differential equation equation for a linear isotropic polarizable medium
V2G(r, r') = —4ad(r—r') (3) Ve(eVe) = —47 p, (12)

and depends on the boundary conditions of the problem; e.g.,If the potential is divided into static and polarization components
¢ = ¢o T dpol, Wheregy satisfies the Poisson equation in free

1 for nonperiodic svstems space (eq 1), eq 12 leads to a differential equation relating the
Ir —r'| P y polarization density and potential,
Go(ri 1) ={ g = @it o (4) _ v
v I(ZO . for periodic systems V2 Bpol = 4T g — ?‘W) = —4no,,  (13)
hereVis th | ¢ th ioci K= 27 d Equation 13 is a general equation for the polarization density
whereV is the volume of the periodic cel, = 2zm, andm =

opol, Which is not necessarily a surface charge density. Integra-
tion of opo OVer all space leads to Gauss’ law

J 0= [ po[*
—fpo(——l)dsr-l-‘mf ()eEd3
=fpo(%— ) r——f()v-Dd3r+

()Dnda

ma; + mpa; + mgaj where @, a5, a3) are the reciprocal space
lattice vectors andnf;, mp, mg) are integers. Henceforth the
nonperiodic case is considered explicitly with the understanding
that extension to periodic systems can be realized by modifica-
tion of the Green’s function.

In the absence of a polarization response, the electrostatic
potential of eq 2 is

sy L rVeo. s
)dr+4ﬂf6qudr

polr )

G )—fl )

If in addition to pg there is arelectric dipole polarizatiorP (it
is indicated below how arises), the resulting potential is given

=

Z—IPoderr—f& ()Dnda

by19
r - 1
) | P(r)(r = 1)) o, __[% 3
o= [ |25+ R & —| S podr (14)
oot where in the last equality it has been assumed that the dielectric
0

n. 1 3.
7t POV, (” . r,|))d r

=/ r—r
=f pO(r'T_v'P(r'))dgr,

r—r'|

(6)
Operating on both sides of eq 6 with the Laplacian gives

()

whereopo = —V-P is thedipole polarization densitandE =
—V¢ is theelectric field Theelectric displacemerd (consider-

Vip = —V-E = —4x [py — V-P] = =47 [py + 0]

function has a constant valueg at infinity (for a nonperiodic
system). Equations 13 and 14 form the basis of the method
presented in section 3.2. The remainder of this subsection
focuses on how the standard boundary element equétighish
differ from those of the present work, are derived from eq 13
with certain assumptions.

For a static charge densipyg that is completely contained in
a closed cavity with unit dielectric; i.eop = 0 everywhere =
1, eq 13, reduces to

1 Ve
O, =-——"

= 4 V=~ Vln(e) E

(15)
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In this situationoy is nonzero only in regions wheeds varying
(e.g., at a dielectric boundary whewén(e) = 0). Equations 13
and 15 can be used to solve gy, if VIn(e) is finite. If VIn(e)

is not finite, as in the case of a cavity of constant internal
dielectric € in V3) that changes discontinuously to a bulk value
(e2 in V, outside ofV;) at the boundary surface, care must be
taken to ensure the boundary conditions:

Equation 21 is equivalent to eq 14 in the case that 1, and
Qo(V1) = S po d¥ integrated over all space (i.@q is completely
contained inV3), in which case from eqs 13 and 15 it can be
seen thatyo resides only on the cavity surface. The distinction
between eqgs 21 and 14 becomes important in numerical
calculations that use constraints on the total surface charge and
in consideration of the generalized model presented in section
3.1

(D; = Dy):ny = 470, (16) The strategy of determiningjy directly from gy via egs 5
and 18-20 is complicated by the fact thaty itself depends
(E;—E) xnyu=0 (17) on ¢y Via the electric field; hence, solution of the equations

) _ o ) typically requires an iterative procedure or matrix inversion
wherenz; is the outward unit normal vector pointing from region  procesgé
1 to region 2, andy is thestatic surface charge densiat the 2.2. Variational Principles. In this section several variational
dielectric boundary (not the induced polarization surface charge principles are presented that can be used with standard
densityopo), and is normally taken to be zero. The discontinuity optimization techniques to solve multidimensional integral
of the dielectric under the boundary conditions of eqs 16 and gifferential equations that occur in electrostatic problems. In
17 results in a polarization surface charge density (see Appendixparticular, the variational principle for the solvation models

A) presented in the next section are derived. For a review of the
calculus of variations, see ref 20.
Opol = (P, = Py)ny (18) The general expression for the electrostatic energy of a charge
L density in a (nonlinear) dielectric mediuntis
whereP; is given by
1 3 D
-1 1 W=-—= [ d’r E-6D 22
Pi=(6' )Ei=(€' )Di (19) 471[ ) (22)
4r 4re,
If the response of the medium is linear, then
Most boundary elements methods recast eqs 18 abd 19 into
a set of linear algebraic equations that are solved to give the ﬁ)D E-OD = % E-D (23)

polarization surface charge vecter,.® The assumptions

inherent in the standard formulation of these methods are that

(1) the charge density is completely contained inside a cavity

of dielectrice; = 1 (leading to eq 15), 2) the dielectric changes

abruptly to the external value at the cavity surface (leading

to eqgs 18 and 19), and (3) no static surface charge is considered

(00 = 0). For a linear isotropic polarizable medium wlih= €E = —€V¢,
Substitution of eq 19 into eq 18 under the boundary conditions one can construct the functional

of egs 16 and 17 (witlop = 0) leads to expressions for the

polarization charge density in terms of the dielectric displace-

and the electrostatic energy takes the simplified form

1 3 1 3
W—QfE-Ddr—Efpoqbdr (24)

ment,
(20)

In this case, Gauss’ law for the total polarizatisarface
charge(the component of the polarization density the caity
surfacg is

€76

_ 1

fsopol da=— Tmfs(?) D-n,, da
N A TR
- _4JT( 6162)fleDdr

N N
N ( 6162)'fv1p0dr

=_(€

whereQq(V4) is the integrated charge associated vgiglinside
V1. For the case of a cavity of dielectrig surrounded by a
conducting medium e, = o), the total surface charge is
—Qo(V1)le1. Note that eq 21 involves integratianer the caity
surfacewhereas eq 14 involves integratiaer all space

) T €

) Qu(Vy) (21)

€162

1
Wl¢; po. €] = [ pop 'r — o= [ Vgre-Vp ot (25)
where pp and e are functional parameters. The condition that
the functional of eq 25 is stationary with respect to variations
in ¢ is

OW,[; por €] 1 _
e po(r) + 4 Ve[e(NVe(r)] =0 (26)

and is equivalent to the Poisson differential equation (eq 12).
The second functional variation is given by

OPWelg; por €] 1 | |
aeE) Ve leVeor =]

4
This operator is negative far > 0, since for any functiorf
that obeys the boundary conditions of the problem,

S 1OV e(r)Vo( — () & & =
— [ [ HOe(r) V0 — VA dr b =

— [ enIVin)Pdr <0

(27)

(28)

The functionaM¢; po, € < 0] is said to beconcae with respect
to ¢ and is amaximumat the stationary point. Far= 1, the
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functional is polarization potential and avoid calculation ¢b and the
associated “self energy™.In most boundary element methods,
1 3 including the present method, the polarization surface charge
W,[¢; po, € = 1] = d’r — = [ V¢-ve d¥r = g the p » the p 9
ol9: po € = 1] f Pof 87rf ¢Ve is solved for directly.

3 1 2, 3 Consider the specific case of a cavityeaf= 1 surrounded
f pop AT+ Qf PVipdr (29) by a conductok, = . From eq 33¢p0 can be obtained by
minimizing the quantity E,o + Eo)? outside the cavity and can
and the extremal conditiodWy/0¢ = O leads to the Poisson  be achieved without approximation by constraining the variation
equation in free space (eq 1). This is equivalent to the condition of the polarization density to be on the surface of the cavity (at
of minimizingthe functional the dielectric boundaryjf the charge density is completely
contained within the caty, as seen by eq 15. However, least-
XEW’; bpe=1]= % f (Vo — V‘/’o)z & = squares minimization of thg difference_o_f two eIectr_ic _fiel(_js in
eq 30 gives the same stationary condition as maximization of
1 f (E-E )2 o (30) the functional of eq 29. Hence, a solution for a conductor can
2 o be obtained through maximization of the functioMé)[¢po; —
po, € = 1] with respect togpo under theconstraintthat the
where theyZ notation reflects the analogy to thé function polarization density occurs only at the cavity surface. The
that is minimized in least-square fitting procedures. As will be resulting functional is simply minus theectrostatic interaction
discussed later, eq 29 and 30 can be used to variationally expananergyof the polarization surface charggo with the static
densities (or potentials) in an auxiliary basis to solve electrostatic charge densityy plus theelectrostatic self energyf the former.
problems. The functional of eq 30 is a specific case of the more Hence, the conductor surface charge density can be derived from

general functional minimization of the total electrostatic energy with respect to
1 variations of the polarization density on the surface of the cavity.
KEL @ by €] = > f [€"E — ¢ YEJ? dr This forms the basic variational procedure for the conductor-

like screening modef

1 _
=5 JIeHE — e EQ1P dr 3. Solvation Models

1 PR In this section §0Ivatior! mpdels based on 'the eIectros}atic

=§fe(E —€ Ey)°dr (31) theory and variational principles presented in the previous
section are developed. Discussion is restricted to the electrostatic

that has a stationary point equivalent to that of egs 12 and 26. component of the solvation energy. The so-called cavitation and

Note that in the above equations the unconstrained variationaldispersion terfs® are not dealt with. The first subsection
parameter is the scalar potential not the vector fieldE = introduces the conductor-like screening model that forms the

—Vg. Variation of the field would require the additional Pasis of the model proposed in the second subsection.

constraintV x E = 0 to ensureE corresponds to minus the 31 The Conductor-Like Screening Model.The conductor-

gradient of a scalar potential. like screening model was outlined in the original paper by Klamt
It i useful to transform the above functionals into ones that @hd Schiirmanrt® and subsequently further developed and

involve variations in the polarization potentiglo. Let ¢ = ¢o applied in quantum mechanical calculatiG#s* A compre-
hensive discussion of this model follows, including generaliza-

+ , then ! ' > ) : : a
Ppol tion to arbitrary internal (solute) dielectric, constraint conditions
VeV, . (e.g., Gauss’ law), and analytic gradient requirements.
W, [@por Po» €] = S oo =)+ dr | XPpadT The Comentional Conductor-Like Screening Modghe total

electrostatic energy of a charge distribution contained in a cavity
1 N 1 5 of unit dielectric surrounded by a conductor is given by
- @f v(t’pol'e'v‘bpol dr — 81 f Vye Vo dr (32)

) W= [ [ @) + o)) Gl ) (0") +
Xepol [Bpoi @0 €] =5 [ € (Eo+ Epoi— € 'Eq)° por) & ' = E + E,qy (34)

1
=1fe

The variational condition®W, ,/d¢pe = 0 and dyzpol/ddp

= 0 are equivalent to eq 13 for the polarization density. The
effect of minimizingxépo, is analogous to a weighted least-
squares fit of the polarization field with the scaled fieldl(e 1
— 1)le] Eo and weight factok. It is clear that fore = 1 there Epo = > f f Tpol(1) Go(I', 1) Opel(1) d’r o +

is no polarization field, and in the limi¢ = o, Epo and Eq

must cancel. The advantage in working with this equation is S [ o) Glr, 1) pofr’) dr &' (36)
that the polarization response can be obtained directly. In

numerical finite difference solutions of the Poisson equation, Here oy is the induced reaction-field surface charge at the
frequently two calculations are employed to obtain the polariza- dielectric boundary, an@o(r, r') is the appropriate Green’s
tion energy ¢ andgg). Recently it has been proposed to apply function (eq 4) of the Poisson equation in free space for the
the finite difference method directly to the equation for the boundary conditions of the problem. The conductor surface

_ 2 h
E oo+ (—6 - 1) EO] o @3 et

E°:%f S Po)Gor, 1)pg(r) dr ' (35)

and
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charge distributionr,o is a solution of the variational condition

oW 5Epo|

60p0|(r) N 50po|(r) =0

37)

Thus, the conductor surface charge distribution minimizes the

total electrostatic energy; i.e., there is no energetic penalty
beyond the normal Coulomb self-energy of the surface charge

associated with polarizing a conducter= «). The particularly
simple conductor variational condition is the basis of the
conductor-like screening model. For a finite external dielectric
€7, the model scales the energy, gradient, and surface charg
distribution by a factoif(e;) = (e2 — 1)/(e2 + X) wherex is a

parameter between 0 and 2, chosen here to be 0 in accord with

Gauss’ law (eq 14). This introduces an error (relative to the
exact solution of the dielectric problem) of the ordes )5
that is small for high dielectric media such as water~ 80).
Scaling the conductor surface charge is equivalent to minimiza-
tion of a modified energy functional where the surface charge
self-energy term of eq 34 is scaled by a factdfet). The factor

f(e2) insures that the polarization surface charge satisfies Gauss

law for an exact solution of theariational conditionof eq 37

(this point is further addressed in the discussion of constraints).

The differential equation that arises from eq 37 is transformed
into an algebraic equation by the introduction i basis
functions for the representation of the surface chargeand

N basis functions for the solute charge dengigy

1 1
Eo =3 Po"Cpo = 500°%0 (38)
11
Epol = @ E 0':,-0|‘A0‘0'p0| + agol'B'PO
_ T T
) apol'A'o'poI + o'pol'B'pO (39)

whereayo is anM x 1 vector containing the coefficients for
the expansion of the polarization surface charge dengitis
andN x 1 vector for expansion of the solute charge dengdy,
= C-po is theN x 1 static potential vector, andlp, B, andC
areM x M, M x N andN x N matrices, respectively, that
define Coulomb interactions between the vectors,Arrd A/
f(e2). The variational condition is

%o pg 4 B'p,=0 (40)
60.p0| pol 0
and has solution
Tpor = — A B pg (41)

where the superscript af,, indicates the polarization surface
charge that minimizes the energy. Substitution of eq 41 into eq
39 and addition ok in eq 38 leads to a compact solution in
terms of the Green’s function:

1 - 1
E=>po(C—BTAT"B)py=2py'Gpy  (42)

and

1 - 1
Epol = 2 pg'(—BT'A l'B)'IOO = EPJ)—'GpoI'PO (43)

York and Karplus

The above solution is particularly convenient for quantum
mechanical calculations since the Green'’s functr Go +

Gpol = C — BT-A1-B can be computed once at the beginning
of the self-consistent field (SCF) procedure where it enters as
a modification to the Hamiltonian matrix elements. The calcula-
tion of the Green'’s function involves the inverse of henatrix

that has dimensiond x M, whereM is the number of surface
elements, and scales @M?3) asM becomes large. This is not

a serious limitation for conventional quantum mechanical
calculations that scale as the cube of the number of electrons
(and hence system size) due to the orthonormality constraints
on the molecular orbitals. The orthonormality conditions are

etypically enforced in the canonical HartreEock and Kohn-

Sham equations by solving a generalized eigenvalue/eigenvector
problemat each iteration of the SCF procedurdaversion of a
symmetric positive definite matrix via, for example, a Cholesky
decomposition, is much faster than diagonalization of a similar
matrix of the same dimensiod%.For very large systems,
however, conventional quantum mechanical methods are not
feasible, and it is necessary to employ “linear-scaling” electronic

,structure methods designed to circumvent the cubic scaling

bottleneck of conventional methods (see ref 33 and references
therein). In this case, the Green’s function solution of eq 43 is
also intractable, and one must devise methods that avoid
construction and inversion of the flll matrix. One such method
utilizes a preconditioned conjugate gradient technique to directly
minimize eq 39 with electrostatic interactions calculated using
a linear-scaling recursive bisection multipole expansion method.

Generalization to Arbitrary Internal DielectricThe original
conductor-like screening model considered the case of an
internal unit dielectric. Here, the procedure is generalized to
arbitrary internal dielectrie;.

From eq 13, the polarization charge density can be broken
into two terms

1—¢ 1 Ve

4 €

Vo =0

S
pol + Opol

Opol = Po (44)

The first term,o:,’OI = po(1 — €)le, is finite everywherepg is
finite ande = 1 (the superscript “V” implies “volume”). The
second termpﬁol = (1/47)VIn(e)- Ve, is finite only in the
region of the dielectric boundary (the superscript “S” implies
“surface”). Under the standard assumption of most boundary
element methods;f;,’(), is taken to vanish. However, this
restriction is not mandatory. The potential dueptpand o\go,
together is the solution of the free space Poisson equation for
the modified density

- v _Po
Peft — Po + Opol = ? (45)
In the case of a charge densipy contained in a cavity of
constant internal dielectrie;, perr takes the form of a scaled
density that can be expanded in the same basig. &x«tension
to cases where the dielectric is more complicated in the region
of po is possible, but for simplicity is not detailed here.

To facilitate the development, a more general scale factor
than f(e,) is introduced based on eq 21 for the polarization
surface charge density

€76
€162

(46)

f(ey, €9 =

Note thatf(1, €2) = f(e2) defined earlier. The development is
analogous to that of the previous section, with thematrix
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defined asA = A/f(e1, €2), and the static potential in eq 38 (2) analytic derivatives of the scale factor with respect to atomic
replaced byperr = B+ perr = (1/e1)do. The equation for the surface  positions (required for forces) and with respect to the static
component of the polarization density obtained from the charge density (required in the Fock or Keh®ham Hamilto-

variational procedure is nian operators, see Appendix B) are not straightforward. The
. first problem can be avoided in the case of quantum calculations
o,fo,: —fleq, €5) Ay l-B-,oo (47) by separation of the total charge density into nuclear and

electronic components. The polarization response for each
and the corresponding Green’s functions analogous to eqgs 42density can be calculated and renormalized individually and

and 43, are subsequently combined to obtain the total polarization response.
A drawback of this approach is that two large polarization
Gley, ;) = 1 C —fley &) B Aal_B (48) responses are calculated that to a Iarge extent cancel one ano_ther.
€ This procedure could lead to numerical errors that are not size

consistent when applied to very large systems, such as can now

and be addressed with linear-scaling electronic structure methods.
The use of explicit constraints in the variational procedure
Gpol(eli e) = (1 - 61) C = f(ey ) BT.AEI_B (49) overcomes tht_ese difficu!ti_es (Ap_pendix B)._ It i§ not cle_ar
€ whether inclusion of explicit physical constraints in the varia-

tional procedure (such as Gauss’ law) necessarily leads to

This model obtains the exact result in the limit= ¢, and improved results for other properties such as the surface element
reduces to the conventional model presented earliesifer 1 basis becomes more complete, the variational energy is sys-
(egs 42 and 43) that in principle is exact when = oo. tematically lowered. Since the constrained variational procedure
Moreover, the equations (if solved exactly) satisfy Gauss’ law imposes a quadratic penalty on the total energy that vanishes
(eq 14) for anye; andea. in the limit that the surface element basis becomes complete,

An alternative to modeling the solute polarizability as a the convergence of the energy with respect to the basis is
continuum dielectric is to employ an explicit polarizable solute retarded by such constraints. Moreover, the potential that enters
model. One possibility that is currently being explored is to the Fock or Kohr-Sham Hamiltonian operators it simply
couple the solvation potential with the chemical potential the electrostatic potential of the constrained surface charge
equalization methdd to model the solute polarizability. density, but contains an additional term that is linear in the vector

Use of ConstraintsThe set of linear equations (eqs-343) of Lagrange multipliers (Appendix B). A modified functional
uses surface element basis functions for the expansion of they 4t avoids these difficulties can be constructed, but only at the
polarization surface charge. Since this basis set is not complete, g of sacrificing the variational relationship with the polariza-

n F’“’?‘C“‘?e' the s_olut|on of _the correspondlng dn‘ferenn_al tion surface charge. This point is further discussed in section
equation is approximate. Of primary concern is that the solution

may not exactly satisfy constraint conditions such as Gauss’ . . .
law (eq 21). More generally, the exact conductor surface charge Cradients An advantage of the conductor-like screening
should cancedll the multipole moments of the solute outside ™Medel (and other boundary element methods) over finite-
the cavity in order that the total field vanishes (see eq 33). In difference methods for solution of the Poisson or Poisson
the case of quantum calculations where the tails of the electronicBoltzmann equation is that gradients for the former can be
density extend outside the cavity, the integrated polarization computed without recourse to mapping transformations from a
density on the surface is not the total integrated polarization three-dimensional griéf. Calculation of gradients for boundary
density (compare egs 14 and 21). Consequently, it is sometimeselement solvation methods in quantum mechanical applications
desirable to normalize the total surface charge to be the have been discussed extensively in the literattite3® 4! The
integrated polarization charge (including the contribution outside purpose here is to outline the general procedure and then focus
the surface). More detailed discussions of the problem of on some subtleties of the surface element derivatives that make
outlying charge have been discussed elsewhé&é>361t is an analytic treatment difficult. In the following section a new
possible in the present approach to incorporate some of theseanalytic solvation method is proposed that overcomes these
conditions by imposing a set of linear constraints and performing difficulties.

a constrained variation of the surface charge density with the e expression for the gradient of the solvent polarization
meth(_)d of Lagrange multlph_ers. The gene_ral form of th_e energy for “fixed” charge distributionsg = po(Ri), €.9., (a set
equations are given in Appendix B. The resultis that a constraint ¢ otom-centered point charges that can move in space, but with

modification is added to the unconstrained surface charge naqnitydes that are constant) follows from egs 39, 40, and 43,
density, and the corresponding correction to the energy can be

expressed as the electrostatic self-energy of the surface charge

correction, or alternately as a positive quadratic term involving ¢ = _ g 00p0 | 1 o_*T.aA' o+ T B i
the vector of Lagrange multipliers. In the limit that the surface P | dq[,- R, 2 P aR; P~ "R Po
elements become complete, the Lagrange multipliers and P
. . ; El  9po
corresponding constraint penalty vanish. L] I
An alternate procedure that has been suggested is to scale ap % IR
the approximate surface charge by the fadtx, whereX is
the theoretical vallié of the total surface charge determined _ 1 0A s + T 0B,
~ . apol apol apol Po
by Gauss’ law, and is the actual computed valdé!8 There 2 P2 OR; IR;
are two main problems with this approach: (1) it breaks down 1 .G
. . . ol . . . . . OI
in the limit 2 or Z go to zero (since this implies scaling by =3 g 3Rp- “Po (50)
I

zero or infinity), e.g., (for any neutral charge distribution) and
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where
G T
ol T a1, 0A T B
R =B A aRA ‘B—-|B A—aR—I——aRAB (51)

The derivative term with respect g, in eq 50 vanishes due

to the variational condition of eq 37, and the derivative term
with respect topy vanishes due to the fixed charge density
assumption. In the more general case of a quantum mechanically
derived charge density, the gradient with respect totttel
energy E= Eqm[po] + Epolpo], WwhereEqm[po] is the quantum
mechanical energy functional in terms of the electron density
po, andEya[pg] is the solvation energy functional of eq 43, can
be written formally as

vE=Eom 8E"°' + [ E ") 5 (52)
TR ap(r) o0 OR;
The first two terms make up the HellmanReynman term
associated with the total energy. The last term in eq 52 that
involves a partial derivative with respect to the electron density
that vanishes if the HellmanrFeynman theorem is strictly
obeyed. This is the case for “fixed” charge distributions (e.g.,
a charge vector that is independent of particle positions),
empirical density-functional based methods such as chemical
potential equalizatio®* and quantum methods that use basis
functions that are independent of the atomic coordinates (i.e.,
do not require Pulay corrections) or in the limit that the basis
set for the expanS|on of the wave function becomes complete Flgure 1. Definition of different molecular surfaces (thick lines): (a)
A e e b el e S TECACA! L ot el e i) ) Sk czosoic surce (A9
. L . and (c) solvent excluded surface (SES).
of electrons with the last energy derivative on the right-hand

side of eq 52, which leads to the conductor-like screening model while satisfying the require-
5 ments for a smooth solvation potential.
po(r) 3, 0 Fr=0 (53 3.2. A Smooth Solvation Potentialln this section, a simple
f r=uz= [ polr) dr (53) _ : :
ap(r) oR analytic solvation model is proposed that overcomes many of

the difficulties associated with other surface element methods.
Gradient corrections for non Hellmanireynman forces have  The model uses the solvent accessible surface (Figure 1) to
been described extensively in the literattd@he purpose here  define the boundary between the solute and solvent so that
is to present the full derivatives of the andB matrixes in eq  evaluation of derivatives with respect to surface element
50, and show that approximate derivative expressions that arepositions is simplified (Appendix C). The problem of Coulomb
used almost universally with conventional boundary element singularities is overcome by the use of spherical Gaussian
solvation methods contain singularities due to discontinuities functions of the form
in the solvation potential.

If the dependence of the surface elements on the atomic (Cz/ﬂ)3/2 —CEr—ry? (55)

positions is neglected, the term involving tAematrix in eq

50 drops out, resulting in ixed cavity approximation: to model surface element interactions. The electrostatic interac-

(FC)_ 1 OB tion between two surface element Gaussians with expoidgnts
ViEpol' = ”pol'ﬁ'f’o (54) and(;, respectively, centered at positionsandrj, is given by
|
where the partial derivative of t& matrix contains only terms (Eim)*%e xie "2(52/71)3’2 5y s s
that involve explicitly the atomic positions (no cavity terms). f f Ir—r| dr d
Calculation of the gradient contribution due to the cavity requires erf(Cir.)
ijhij

an analytic expressions for theandB matrix elements in terms Bl 4 (56)

of the atomic positions. This is often not straightforward since, i

for example, the diagonah matrix elements that typically

depend on the area associated with individual surface elementsvheregj = &g/ §i2+§1-2 andr; = |r; — rj|. Each atomic sphere
are complicated functions of geometry in the region of atomic is discretized into a set of surface elements according to the
overlap. As regions of the surface become exposed or buried,points and weights used in high-order angular quadrature
new surface elements emerge or vanish and cause the dimenschemes for spherical harmonics. This forms a natural basis for
sions of theA andB matrixes themselves to change discontinu- expansion of the solvent reaction-field (polarization) potential
ously. A detailed discussion of the requirements for a smooth and affords significant flexibility in choosing the level of
solvation potential are presented in Appendix C. The next discretization. The model is calibrated by adjustment of the
section introduces a new method that retains the simplicity of Gaussian exponents to obtain the exact Born solvation energy
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and a uniform charge distribution for spherical ions. The matrix TABLE 1. Gaussian Exponents for a Unit Sphere at
equations are further modified by a transformation involving a Different Discretization Levels®

switching operation on the inverse diagoAainatrix elements no. of points Imax 2max+ 1 ¢ Orms
that allows the effect of surface elements on the energy to be 14 5 5 4.865 8.9 104
smoothly switched on or off as they become exposed or buried 26 3 7 4.855 6.9 103
in a manner that maintains linearity of the algebraic equations. 50 5 11 4.893 3.5 108
Discretization of the Atomic Spherékhe high-order angular 110 8 17 4.901 3.&10°3
numerical quadrature schemes with octahedral symmetry for 194 11 23 4903 24107
spherical harmonic functions described by Deffayere used igi }‘7‘ §§ 2'382 i; ig3
as a basis for discretization of the atomic spheres into surface 590 20 41 4.905 2% 103
elements. The numerical quadrature schemes provide a set of 770 23 47 4.899 5.6 1073
M points{fi} (assumed on the unit sphere) and weidhtg} 974 26 53 4.907 5% 10°°
that allow integrals of functions to be approximated by 1202 29 59 4.907 4510
aOptimized values of defined in eq 61 that give the exact Born

o x M ion energy are shown for angular quadrature schemes designated by
ﬁ) do fo“ f(f)sin(@) do = f f(F) dQ ~ Z (P W, (57) Imax defined in egs 58 and 59. The relative deviatings is defined as
Oms = 4/ {00 Oerar) 107, . IWhere o7, is the calculated surface
charge vectorgexact is the “exact” surface charge vector defined as
where [ dQ = fOZT de fg sin(@) df. The quadrature schemes  Oexact= —.w/47r,. an.dw is the vector of angular quadrature .weights for
are chosen such that the above integral is “exact” (to machine & given dlsgretlzatlon level. Note that, as the number of points |.nc.reas.es,
precision) if the angular functiofff) can be represented by an }hgldenom|natoﬁlrr]§xacp_d¢creaslt_as such thal‘t the rela#ye_ de\gatlon IS
expansion in spherical harmonic functions up to a given order ;lr);rfé)‘r;star:; g gggrgg“fr:fme'gzago?r?trrsecﬁg‘r):ecoe icient between
2lmax + 1. Hence, the numerical quadrature schemes of a given " ? exact™> M- '
order satisfy thé.; norm conditions for G< | < 2lax+ 1; that
is,

exponentsik were chosen to obtain the exact Born solvation
energy for a conductor, and to closely reproduce a “uniform”
charge distribution on the surface. The latter implies that the
surface element charges on f resulting from the variational
procedure for a spherical ion of charQeequal the correspond-
ing normalized quadrature weights; i.e.,

M
S ¥ 002 = 5 i = Vazos,  (58)

and L orthonormality conditions for & I, I" < Inax 0, = —Qw/4x (60)

M Initially, the Gaussian exponents that produced, to within
f Yiml(F) Yy (F) d€2 = Z Yin(Fid Yo (Fi) W= machine precision, the Born energy and uniform charge
distribution were obtained by solving a set of nonlinear equations
011 0mm (59) with an iterative procedure. However, it was found that the
Gaussian exponents can be well approximated by
Spherical harmonic expansions have been used routinely for
the solution of electrostatic problems since they are eigenfunc- &= glm (61)
tions of the angular part of the Laplacian operator in spherical
polar coordinates. High-order numerical integration schemeswhere{ is a parameter. For a given quadrature scheme, the
have been extremely valuable in the solution of the Poisson parameter¢ is adjusted to obtain the exact Born solvation
equation in density-functional calculatioffs!> In Gaussian- energy, and with the above relation between the Gaussian
based density-functional methods, the electron density is oftenexponents and quadrature weights (eq 61), results in a nearly
expanded in an auxiliary set of Gaussian functions to ap- uniform surface charge distribution (Table 1). Relations between
proximately solve for the electrostatic potentiaA variational the Born solvation energy and Gaussian exponents are derived
procedure for accomplishing this involves extremizing (maxi- in Appendix D using a simple analytic model. It is shown with
mizing) the functional of eq 2¢. This and related functionals  the analytic model that the Gaussian exponent that gives the
have been used extensively to variationally “fit” electron exact Born solvation energy varies as the square root of the
densities in density-functional calculatiotfgjetermine atomic number of surface elements (eq D-8). If it is assumed that the
“charges” in molecule$? and numerically solve the Poisson quadrature weights vary roughly inversely with the number of
and PoissonBoltzmann equation®. As discussed in section  surface elements, it is expected thain eq 61 is roughly
2.2, the variational procedure given by eq 29 is equivalent to constant for different quadrature schemes. The valugsiof
the conductor variational procedure (eqs—3#) with the Table 1 range from 4.85 to 4.91, suggesting that the analytic
restriction that the polarization density occurs only at the surface, model provides a useful qualitative description (see Appendix
and the electrostatic energy is minimized instead of maximized. D for more detail). For spheres of radil the Gaussian
The surface elements that are used as basis functions in theexponents obey the scaling relatidi(R) = &«(1)/R that
variational procedure should be chosen to give an accuratepreserves the Born energy and uniform surface charge distribu-
representation of the multipole expansion of the solute potential tion. Consequently, the exponents for any radius are determined
outside the cavity. For this purpose, the spherical harmonic simply from the angular quadrature weights and tabulated values
angular quadrature schemes are particularly well suited. Angularof ¢.
quadrature schemes with octahedral symmetry are used with Construction of an Analytic Sation Potential The Gaussian
number of points/sphere ranging from 14 to 1202, corresponding exponentsy and positiong form the basis functions for the
to Imax = 2 to 29, respectivel§® For each set of quadrature polarization surface charge, and are used to construct the matrix
pointsfy of a given ordetmax On the unit sphere, the Gaussian elements of eqs 39%43. The diagonal elements of thematrix
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Figure 3. Dependence of the solvation energy on the Gaussian
exponents. The figure plots the quantEfy)/Egorn Versusy for a
spherical ion at several discretization levels, wHeg) is the solvation
energy obtained with the set of scaled Gaussian expoigentst/y,
and ¢ is the calibrated value (at each discretization level) that gives
the exact Born ion energy. Shown are (a) values calculated with the
Figure 2. Smooth surface area model for a diatomic molecule. conductor variational procedure using the atomic surface discretization
schemes given in Table 1, and (b) values predicted from the analytic

model derived in Appendix A.
represent self-energy terms of the surface elements and are

analogous to the basis function “hardness” in the method of
chemical potential equalizatioit These elements impose a
guadratic energy penalty associated with polarizing a particular
surface element. As the diagonAl matrix elements go to

For a smooth representation of the solvation energy and
surface charges, it is necessary to introduce basis functions
(surface elements) continuously as changes in geometry bury
o L . ; N or expose new regions of the solvent accessible surface. This
infinity (bepome |nf!n|tely hard ), no polanzanpn oceurs, and is affected by scaling the basis function self-energies from their
the associated basis function expansion coefficients go to ZEr0..librated values on the surface of the cavity rapidly but

This result is exploited to construct an analytic potential that smoothly to infinity as they enter the cavity. This is realized
allows surface elements to appear and disappear smoothly withyy jntroduction of a “switching region” (Figure 2) of thickness

of the algebraic equations. In some seiadleof the surface atomic sphere with radiug such that

element basis functions associated with each atomic sphere are

considered (whether buried or on the surface), and the value of R, =R — R, (62)
the diagonal elements of th& matrix are a function of the ! !

overlap with other atomic spheres. The diagonal elements are Y .

equal to the normal (calibrated) values on the solvent accessible RO”'i R+ (1 aJ)RSW; (63)

surface and go quickly but smoothly to infinity in regions of

overlap with other atomic radii as surface elements become Whereq; is a parameter between 0 and 1. The switching function
buried. It is shown below that if the diagonal elements go to that is used is given by

infinity, the associated off-diagonal matrix elements do not

contribute to the energy and it becomes rigorous to exclude them 0 r<o
in the algebraic equations, and thus reduce the dimensionality Su(n) = 3 (10— 151 + 6r2) 0O<r<1 (64)
of the problem and greatly increase computational efficiency. 1 r>1

Consider a system df atomsi = 1, ... N, with atomic radii
Ri. The discretized solvent accessible surface is constructed by,
translating a unit sphere ® elementdy, k=1, ...M to each
atomic center and dilating the sphere to the ratRu3hus, the
position of thekth surface point on atotinis rix = R; + Rfx. A S O=50=52 0 =s2@®)=0
supermatrix notation is used here such that the subsdkipt “
together designates a single index for vector and matrix elementswhere &(,2) (r) = 9" Su/or". The off-diagonal A; matrix
associated with th&th surface point of théth atom; e.g., the elements in the model represent electrostatic interactions
diagonal element of th& matrix is denoted\y ik (the indices between the spherical Gaussian basis functions for expansion
k and| are used for the surface elements associated with aof the polarization surface charge, and the diagonal matrix
particular atom designated by the indidesr j). elements represent scaled (for purposes of smoothness as

nd has the endpoint conditions

(65)
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discussed above) self-energies and have the form

_erf(Glric—ryl)

(Ao)ik,jl - W (66)
Ak = j_élﬂ She (67)

where

Ci'k,jl = Cika/V Czik + Czjl (68)

G = I WR) (69)
S= |_| S/vf(fik,j) (70)
j
Fi; = [Irae — Ryl = Rinj]/sti (71)
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and

erfGlry — Ryl)
VB = — ( |r:<k _k R| =

2 2o ol T — R
ﬁ Cike e ) |r‘k — R.J|2 (5im - 6jm) (77)
[ j

Equation 67 above involves scaling the diagonal elements of
by a factor that varies between 1 andand it is not immediately
evident that this allows surface element basis functions to appear
smoothly with respect to the energy. The problem can be
reformulated in a way that avoids the singularity at the inner
shell boundary.

Consider partitioning theA matrix (with scaled diagonal
elements) into diagonal and off diagonal parts:

A= Agagt Act) = Agiag(L+ AgagAsr)  (78)

The ¢ parameter in eq 69 for each discretization level (quadra- and

ture scheme) are listed in Table 1. The valuesa{fi;) in eq

70 varies between 0 and 1 and reflects the degree to which the
ikth surface element (theh surface element on the discretized
atomic sphere of atom) has been switched off or on,

AT =1+ AgagAon) Aging (79)

respectively, by overlap with all the other atoms. The switching The above expression fax~* does not contain singularities

function Sy(fik;) is nonzero only for values dfy; between 0
and 1 (see eq 64), which indicates the degree to whiclkthe

(unlike A) since it depends only on the inverse of the scaled
diagonal elements eq 67. Since the surface charge and energy

surface element has penetrated the switching layer of atom (egs 41 and 43) rely oA~! and not onA explicitly, these
The B matrix elements represent electrostatic interactions quantities can be evaluated by eq 79 without singularity

between basis functions for the solute charge densitsgnd

problems. This expression, however, is not ideal for computa-

basis functions for the polarization surface charge density. If a tion, since evaluation oA~ requires inversion of an unsym-
point charge basis for the solute charge density is used (suchmetric matrix @ + A&ingff)- It is advantageous to retain
as those used in conventional molecular mechanics force fields),matrixes that are symmetric and positive definite to allow stable

the B matrix elements have the form

_erf(Gylry — Ryl)
(Bl = W (72)

and efficient numerical solution of the associated linear equation
via, for example, symmetric matrix inversion from a Cholesky
decomposition (instead of general matrix inversion) for small
matrixes, or conjugate gradient methods (instead of biconjugate
methods) for direct minimizatiof? Thus the above equations

The above expression for the matrix elements differ from those are rewritten in the symmetric form:
presented in other works that model the surface elements by

point charged®2226The gradients corresponding to eqs—66

72 are given by

VilAdij = — (W -
i j
2 ., R Ta— Mg — I’J-|
_C @ Gkl )—((3 -9 ) (73)
\/E ik jl |rik_ rj||2 im jm
atoms 9§ ¢(Fy ;)
VilAdikik = ~ (A z — Vil (74)
] i
where
0 r<o
0S,+(r
Sulr) _ 3orr—172? 0=<r=1 (75)
or
0 r>1
. M = R ) 1
Vi =l—|=—(:.,— 0, 76
m'ik,j (|rik _ Rj' stl ( im ]m) ( )

A= Alieg (1F Agag Ao Agag) Adag  (80)

AT = Adag (L + Adag A Adag) “Adag  (81)

It is clear from the above equations that the effect of the
transformationA gor(...Agar is to create a null space for
matrix elements correspondingAQiag = ; i.€., this operation
zeros out all rows and columns correspondingAQ;’gz)ik,ik =

0. Consequently, the dimensionality of the problem can be
reduced without approximation to that of surface element basis
functions having nonzero scale fact@g Moreover, the only
appearance of the scaled diagonal elements occurs in the form
of Agae which have positive semidefinite values, and the
transformed matrix Agic-AcAgar) that has elements
bounded by 0 and 1.

The solution for the polarization surface charge can be
rewritten in the transformed reduced dimensional space as

ol = —A"B"pq (82)
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where a) Point—-charge b) Gaussian ¢) Gaussian/smooth

—1_ —12, 5 pA-L2-1
A - (1 + Adiag Aoff Adiag 200 \
\\‘QM\SM 26 pt
T7) —1/2y—1 w sopt 50p1 ] sopt |
= YA . 0 1
(Agiag"A*Adiag (83) \\p 0w
~200 302pt 302p1 s02p |

B'=AgarB (84) 400

_ w200 \\

and the (untransformed) surface charge is recovered by . [ 2P ke i
5 0 - S
== \//
_ A2 ' u
G0 = Adiag "ol (85) © 00 \Tﬂ/

400

N

Clearly the charge of a surface eleménts zero if @&;gz)ik,ik 200 \\ \ \
— O_ 102 pt & 302 pt

Switching ParametersThe problem of discontinuities in the N |
solvation potential as new surface elements vanish or emerge® _,q,
is remedied in the present model by the introduction of a T s s i 0 T s s i o T s s s
switching region defined by concentric shells on either side of R (A) R (A) R (A)
the. van der Waals radius (Flgyre 2.)' The radil that bound_the Figure 4. Smoothness of the solvation potential. Curves are shown at
switching regionRy, andRo. defined in eqs 62 and 63, contain  seyeral atomic sphere discretization levels for two ions with unit radii

JE/R E
o
[
|

two parameters: the thickness of the switching redtap and and oppositely signed unit charges as they separate alongatkis.
a shift parameten that determines where shells are located (a) Point-chargemodel: interactions between surface elements are
with respect to the van der Waals shell. modeled by point-charge interactions. (@ussiarmodel: interactions

The switching layer thicknesRs,, for a particular atom is between surface elements are modeled by Gaussian interactions (see

chosen to be proportional to its van der Waals radRudt is text). c) Gaussian/smootimodel: same as b) with the addition that
Prop surface elements appear smoothly by switching on the diagonal self-

further required tha',[ the proportionality constant be bounded interactions ¢s = 1, see text). The top row shows the relative solvation
from above by 1 to insure th&s,, does not exceeg. In the energy E (kcal/mol, shifted for clarity) as a function of separation
limit that the number of surface elements becomes infinite, the distanceRr, and the middle and bottom rows include the corresponding
discontinuities associated with appearance of new surfacegradient curves (kca_lll_rno&) below the horizontal zero axis. Gradients
elements vanish, and no switching is necessary. For a finite Were computed by finite differencesgfiR = AE/ARwith AR= 0.01
number of surface elements, a switching region is necessary’™) t°| depict graphically the relative area associated with each
for the potential to be smooth. The thickness of the switching singularity.

region is defined to be an empirical relation wherew is thekth angular quadrature weight on atorand

is the switching matrix defined in eq 70.

Ry, = 7R VIAM = 4R ©) . “
4. Numerical Tests
whereys is the degree of switching; is the atomic radius of
atomi, andM is the number of points/sphere (determined by
the discretization level). Equation 86 f&,y allows the level
of switching to be attenuated by adjusting the valueyef
between zero (no switching) and 1 (“full” switching) such that
full switching at the lowest discretization level considerdtl (
= 14) gives a switching radius equal to the atomic radius of
that atom. The definition ofs is such that at full switching the
switching radius will never exceed the radius of the atom itself.

Several empirical forms for the parameterwere derived
from analytic two-body models and tested. The results indicate
that as long as the switching region is fairly small compared to
the atomic radii, the optimal choice foris very nearly'/, (the
symmetric switch is centered at the atomic radius). A slightly
modified form fora is proposed here that is inspired by a simple
surface area model (see Appendix E). The result is

The following sections provide numerical tests of the
proposed solvation model. In the first section, the smoothness
of the potential is examined in the case of two separating ions.
In the second section, the accuracy and convergence of the
method are compared and the magnitude of the energy variations
with regard to coordinate rotation is addressed. In the third
section, results are presented for the solvation energy along the
reaction coordinate of the hydrolysis of ethylene sulfate.

4.1. Smoothness of the PotentialThe smoothness of the
solvation potential with respect to changes in geometry is
examined for the case of two oppositely charged ions with unit
radii as they are separated along #exis. The smoothness of
the potential is affected by (1) the discretization level of the
atomic spheres, (2) the occurrence of Coulomb singularities in
the potential caused by overlapping surface elements modeled
by point charges, and (3) discontinuities that arise from new
surface elements that suddenly appear as the ions separate.
1, R ( R )2 1 (87) Figure 4 compares the affects of each of these factors on the

%=3%R " Raw 28 solvation energy curves.
' ' For the point-charge model (Figure 4a), singularities in the

whereRsy, is given in eq 86. The parameteris independent potential are evident at low and medium discretization levels
of geometry and other atomic radii. The smooth model surface (26 and 50 points/sphere). Corresponding singularities in the

area can be computed as gradient curves are more pronounced, and persist even at high
discretization levels (302 points/sphere) where they correspond

atoms M to jumps in energy of up to a few kcal/mol. The main source

SA= z Z Wi S (88) of the singularities in the gradient is the Coulomb singularity
[ that occurs when two surface elements on different spheres are
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16 18 20 22 24 Figure 6. Accuracy and convergence of the solvation energy. The first
R (A) column plots the solvation enerdy (kcal/mol) as a function oM,

the number of surface elements/atomic sphere; the second column shows
the relative error (estimated relative to a discretization level of 5000
points/atomic sphere) as a functionMt’? (M*?2is related to the average
distance between surface elements). Curves corresponding to smoothing
levelsys = 0 (thin solid line),ys = 0.5 (thin dotted line), angts = 1

(thick solid line) are shown for the transition state intermediate in the
nucleophilic attack on ethylene sulfate by a hydroxide ion [ES-PH

(top), the neutral amino acid asparagine, and the negatively charged
guanine 5nucleotide phosphate.

Figure 5. Solvation gradient curves (kcal/mél) for separating ions

at different discretization and smoothing levels. Discretization levels
range from 26 points/atomic sphere (top) to 302 points/atomic sphere
(bottom). Gradient curves are shown with no smoothing= 0, thin

solid line), intermediate smoothingd{ = 0.5, thin dotted line), and

full smoothing ¢s = 1, thick solid line). The second column shows a
magnified view of the range bracketed by dotted lines in the first
column.

nearly superimposed. The corresponding off-diagénalatrix levels. These features are important for gradient-based geometry
elements become unstable and can result in a singular matrix.optimizations, transition-state searches, and molecular dynamics
These errors can make a positive or negative contribution to simulations.
the gradient, and in some instances cause it to transiently change 4.2. Accuracy and Convergencen this section the accuracy
sign. This results in an artificial attractive well in the solvation gnd convergence of the proposed method with respect to the
energy curve that should be monotonic in the present example.surface discretization level is examined, modified functionals
Figure 4b illustrates the effect of replacing the point-charge that obey physical constraint conditions are presented, and the
surface element interaction model with the proposed Gaussianproblem of rotational variance is discussed.
model. No singularities in the potential occur and the solvation  Table 2 lists the solvation energy, total surface charge, and
energy curves are greatly improved even at low discretization surface area (eq 88) at smoothing leveis=0, 0.5, and 1 for
levels. This is in part due to the relation between the Gaussianthe pentacovalent transition state intermediate in the hydrolysis
exponents and quadrature weights (eq 61) that result in thereaction of ethylene sulfate, [ES-OH (ref 50). At low,
former being roughly proportional to the square root of the medium, high, and very high discretization levels (14-26, 50-
number of surface elements/atomic sphere (Appendix D); i.e., 110, 302-590, and 1202 points/sphere) the relative error in the
as the number of surface elements decrease, the Gaussiagolvation energy is typically less than 1%, 0.5%, 0.2%, and
functions become more diffuse and result in smoother interac- 0.05%, respectively. Accuracy sufficient for most chemical
tions at short range. However, in the absense of smoothing, applications (less than 1 kcal/mol) is obtained with relatively
singularities in the gradient that correspond to discontinuities Jow discretization levels; however, convergence to higher
in the solvation energy remain, especially at low discretization accuracy is rather slow. It is possible that further refinement of
levels (26 points/sphere). These singularities arise from the the model, such as modification of the switching scheme in eq
sudden appearance of new surface elements as the ions separaigg, may offer improvement. Figure 6 illustrates the convergence
The nature of the singularity is to cause a discontinuous decreasef the solvation energy with respect to the discretization level
in the solvation energ$f Figure 4c shows the effect of smoothly  for several molecules at various levels of switchipg= 0,
turning on new surface elements with the proposed method (0.5, and 1. The figure supports the main conclusions derived
= 1in eq 86). Even at low discretization levels the gradients from Table 2 with regard to the magnitude and convergence of
are smooth. errors. The convergence of the relative errors is more uniform
Figure 5 compares the solvation energy gradients as a functionwith smoothing.
of separation distance for several discretization and smoothing The exact conductor solution (i.e., in the surface element basis
levels. In the case of no smoothings(= 0), the gradients have  set limit) obeys Gauss’ law (eq 21). For the discretization levels
singularities due to discontinuities in the potential as described considered here, the error in the total surface charge is very
above. At medium and full smoothingyd = 0.5 and 1, small (Table 2). With no smoothing, agreement with Gauss’
respectively) the gradients are smooth for all discretization law is extremely good, with relative errors of approximately
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TABLE 2: Convergence of Solvation Properties with Discretization Level for [ES-OH]* 2

no. or points Epol error Q error SA error
rs=0
14 —71.666 £0.343) 1.003 (2.6< 1073) 164.649 (—14.233)
26 —72.034 (0.025) 1.001 (1.2 1073) 159.524 £9.108)
50 —71.609 0.401) 0.999 (6.0< 1074 154.305 3.889)
110 —71.699 ¢0.310) 1.000 (2.6< 107%) 149.754 (0.662)
194 —71.874 0.135) 1.000 (2.0 10°5) 151.267 (—0.851)
302 —71.972 ¢0.037) 1.000 (5.0< 10°9) 151.466 ¢1.050)
434 —72.010 (0.001) 1.000 (4.0 1075) 150.914 0.498)
590 —71.918 (0.091) 1.000 (3.6< 10°9) 149.951 (0.465)
770 —71.946 0.064) 1.000 (1.0 10°5) 150.208 (0.208)
974 —71.983 0.026) 1.000 (2.6< 107 150.394 (0.022)
1202 —71.994 0.015) 1.000 (0.6« 10**) 150.635 0.219)
Vs = 0.5
14 —70.286 1.723) 0.998 (2.2 1073) 154.305 (3.889)
26 —71.359 (0.650) 0.998 (1.6< 1073) 149.411 (1.005)
50 —71.408 ¢0.601) 0.998 (1.% 1073) 150.043 (0.373)
110 —71.675 (0.334) 1.000 (4.% 1074 149.584 (0.832)
194 —71.858 0.151) 1.000 (1.2< 1074 151.256 ¢0.840)
302 —71.883 (0.126) 1.000 (1.5¢ 107%) 150.346 (0.070)
434 —71.931 ¢0.078) 1.000 (9.0< 1075) 150.514 ¢0.098)
590 —71.934 ¢0.075) 1.000 (5.0< 10°) 150.261 (0.155)
770 —71.948 0.061) 1.000 (3.0 1075) 150.329 (0.087)
974 —71.973 (0.037) 1.000 (3.6< 10°9) 150.348 (0.068)
1202 —71.987 0.022) 1.000 (2.0 1075) 150.629 ¢0.213)
ys=1
14 —70.429 (1.580) 0.992 (8.3 1079) 145.166 (5.250)
26 —71.617 (0.392) 0.996 (3.8< 1079) 145.414 (5.002)
50 —71.736 ¢0.273) 0.997 (2.5< 1073) 147.046 (3.370)
110 —71.904 (0.105) 0.999 (9.6< 1074 148.621 (2.795)
194 —71.952 ¢0.057) 1.000 (3.6 1074 150.065 (0.351)
302 —71.943 (0.066) 1.000 (2.6< 1079 149.751 (0.665)
434 —71.952 0.058) 1.000 (1.6< 1074 150.100 (0.316)
590 —71.954 (0.055) 1.000 (1.6< 1079 150.133 (0.283)
770 —71.967 0.042) 1.000 (8.0< 1075) 150.240 (0.176)
974 —71.978 (0.031) 1.000 (6.0< 10°) 150.244 (0.172)
1202 —71.989 0.020) 1.000 (5.0< 1075) 150.387 (0.029)

2 Solvation energyEyq (kcal/mol), total surface charg@ (au), and surface area SA3ACorresponding errors are shown in parentheses. Errors
were estimated relative to a discretization level of 5000 points/atomic sphere. Smoothing levels are indigatedlys (see text).

TABLE 3: Comparison of Unconstrained, Constrained, and Nonvariational Functional$

no. of points Epai(0) error Epoi(4) error ELOM) error

ys=0

26 —72.034 (0.025) —72.034 (0.025) —71.984 (0.026)

50 —71.609 (0.401) —71.609 (0.401) —71.639 (0.371)

110 —71.699 (0.310) —71.699 (0.310) —71.712 (0.297)

302 —71.972 (0.037) —71.972 (0.037) —71.974 (0.035)

Vs= 0.5

26 —71.359 (0.650) —71.359 (0.650) —71.438 (0.572)

50 —71.408 (0.601) —71.408 (0.601) —71.494 (0.515)

110 —71.675 (0.334) —71.675 (0.334) —71.699 (0.311)

302 —71.883 (0.126) —71.883 (0.126) —71.891 (0.119)
rs=1

26 —71.617 (0.392) —71.616 (0.393) —71.810 (0.119)

50 —71.736 (0.273) —71.735 (0.274) —71.882 (0.127)

110 —71.904 (0.105) —71.904 (0.105) —71.953 (0.057)

302 —71.943 (0.066) —71.943 (0.066) —71.956 (0.053)

a Solvation energy (kcal/mol) calculated from different functionals: the unconstrained funcg(@) of eq B-3, the constrained functional
Epoi(1) of eq B-6, and the nonvariational constrained functiolf{%!(}t) of eq B-8. Corresponding errors are shown in parentheses. Errors were
estimated relative to a discretization level of 5000 points/atomic sphere. Smoothing levels are indicatedlogs (see text).

0.1%, 0.05%, 0.005%, and 0.001% for low, medium, high, and Table 3 compares the energies resulting from each of these
very high discretization levels, respectively. For the smooth procedures. There are almost negligible difference between the
models, errors are slightly larger, especially at the low discreti- energies from the unconstrained and constrained variational
zation levels that have larger switching regioRs,(in eq 86). functionals, the latter always bounded from above by the former.
One can insure that Gauss’ law is obeyed by application of This is consistent with the previous observation that Gauss’ law
constraints in the energy variation with the method of Lagrange is very nearly satisfied in the absence of constraints. The
multipliers. Alternately, nonvariational functionals can be nonvariational functionak; (1) results in energies that are

pol
constructed that have the constraints built in (see Appendix B). comparable to the corresponding unconstrained energies in the
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TABLE 4: Rotational Variance?

no. of points EpolD [OEpo0 E* QO [0QO [SA0 [0SAT

ys=0

26 —71.266 (0.445) 2.200 0.999 (141073 150.775 (3.690)

50 —71.548 (0.199) 1.030 0.999 (6:4107%) 150.207 (2.460)

110 —71.758 (0.107) 0.541 1.000 (111074 150.454 (1.470)

302 —71.919 (0.038) 0.232 1.000 (39109 150.547 (0.763)

Vs= 0.5

26 —71.134 (0.229) 1.050 0.996 (121079 148.899 (1.970)

50 —71.471 (0.101) 0.599 0.999 (48109 149.553 (1.230)

110 —71.699 (0.058) 0.356 1.000 (121079 150.027 (0.862)

302 —71.887 (0.021) 0.110 1.000 (2241079 150.357 (0.424)
ys=1

26 —71.389 (0.138) 0.620 0.995 (1:0107%) 144.813 (0.897)

50 —71.778 (0.066) 0.368 0.998 (3:8107%) 147.210 (0.547)

110 —71.911 (0.032) 0.181 0.999 (921079 148.872 (0.374)

302 —71.946 (0.010) 0.054 1.000 (181079 149.881 (0.175)

a Rotational variance was computed by sampling Euler rotations irir@érvals. Bracketed quantities indicate average values of the solvation
energyEyq (kcal/mol), total surface charg® (au), and surface area SA A Corresponding root-mean-square deviations are indicateid.byl
The “energy barrierE* (kcal/mol) is the difference between the maximum and minimum sampled energy values. Smoothing levels are indicated
by ys values (see text).

case of no smoothingy§ = 0), whereas in the case of full 12
smoothing ¢s = 1) the functional leads to considerable 8t
improvement at low discretization levels, reducing the error by
roughly a factor of 2. Further testing and comparisons are needed
before one can conclude th&,,(4) is a better solvation
energy functional than the unconstrained variational functional.
Numerical methods that utilize surface elements or 3-dimen-
sional grids are subject to “basis set” related errors. In particular, -8
if the basis functions used to expand the solvation potential are sl ™
not rotationally invariant, the solvation energy varies when the
system is rigidly rotated. Table 4 compares the magnitude of
the rotational root-mean-square deviation (rmsD) of the solvation
energy, total surface charge, and surface area for [ESFOH Al soln.
at several discretization levels. The rotational rmsD provides h S
statistical information that compliments the absolute errors given -8 25 30 35
in Tables 2 and 3. The rotational rmsD measures the fluctuation 0...8 distance (A)
of a quantity for many orlenta'tlons Whgreas the abso!ute error Figure 7. Potential energy surfaces for OMdttack on ethylene sulfate
measures the error in the basis set limit for a single orientation. at gifferent levels of smoothing. Curves at several discretization levels
The rotational energy rmsD is typically lower than the absolute (26, 50, 110, and 302 points/atomic sphere, corresponding to solid,
error of Table 2. Moreover, the rotational energy rmsD in the dotted, dashed, and thick solid lines, respectively) are shown for
full smoothing modelys = 1) is about a factor of 24 smaller smoothing levelsys = 0 (no smoothing, top), angs = 1 (full
than in the model with no smoothingd = 0). The rotational ~ Smoothing, bottom).
rmsD of the total surface charge at each discretization level is ) ) ) )
similar for all smoothing levels, and comparable in magnitude ~ 1"€ present solvation model is not yet integrated into &
to the Gauss’ law error in Table 2 with no smoothing. The guantum mechanical electronic structure package, so that self-
rotational rmsD of the surface area is reduced by a factor of 2 consistent results are not yet available. To assess the magnitude
with full smoothing relative to no smoothing, and the magnitude ©Of errors in a real chemical application of the present model,
is significantly less than the error in Table 2. Overall, the the energy surface of the hydrolysis reaction of ethylene sulfate
magnitude of rotational rmsD for the solvation energy, total Was studied. Density-functional results for the gas-phase charge
surface charge, and surface area are less than the correspondir@£nsity along the reaction coordin#evere used as input to
basis set errors, and decrease with smoothing so that thecalculate the solvation energy correction to the reaction profile
rotational variance is not expected to be a dominant error in With the present model. Figures 7 and 8 compare the gas phase
calculations. and solvent corrected energy surfaces for the nucleophilic attack
4.3. Application to Sulfate Hydrolysis.Solvent stabilization ~ by OH™ on ethylene sulfaté’ Only the electrostatic component
plays an important role in reaction dynamics in solution. Of the solvation energy is considered. The overall solvation effect
Quantum mechanical calculations at reliable basis set levels ards to stabilize the separated reactants relative to the complex.
currently too time-consuming to include many solvent molecules The system has a net-() charge that in the reactant state
in routine transition state optimizations. Consequently, these resides on the hydroxide ion, and hence it is not surprising that
calculations are typically performed in the gas phase and the most solvent exposed conformations (corresponding to large
subsequently corrected to account for an approximate solvationseparation distances) have the largest solvent stabilization. This
effect850 Alternately, one can include the solvation potential contrasts with cases where both reactants have the same sign
directly in the electronic Hamiltonian and introduce solvent charge, such as a hydroxide ion attacking a negatively charged
effects self-consistently. For an explicit solvent representation, phosphate, for which the transition state is preferentially
the latter procedure is more reasonable. stabilized by the solversf.

E’ (kcal/mol)

N soln.

gas

E' (kcal/mol)
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12 extended to model finite dielectric materials such as liquid water
g ¢ with reasonable accuracy. Extensions of the method to incor-
gas porate variational constraints and to model smooth surface areas
have been presented, as well as the generalization to arbitrary
internal dielectric constants. It is anticipated that once integrated
al soln. with quantum mechanical or molecular mechanical programs,
the model will be an effective tool for the description of
molecules in solution.

~
T

E (kcal/mol)
(=]

-8 1
302 pt

gas
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Figure 7 compares the solvation curves at different discreti-
zation levels (26, 50, 110, and 302 points/sphere) at smoothing
levelsys = 0 and 1. Withys = 0, the curves are irregular at
the lower discretization levels (26 and 50 points/sphere). With
ys = 1, the curves are very smooth. The maximum difference  Polarization Charge Density at a Dielectric Discontinuity.
between the curves occurs for the separated reactants where thg, this appendix the limiting behavior of a surface charge density
total energies are-4.6, —5.3, —5.3, and—5.5 kcal/mol for  arising from a dielectric discontinuity under the boundary
discretization levels of 26, 50, 110, and 302 points/sphere, conditions of egs 16 and 17 is addressed; i.e., the connection
respectively. Figure 8 illustrates the effect of smoothipg=< between egs 13 and 20 is formed in this limit. The definition

0, 0.5, and 1) for high and low discretization levels (26 and ¢ he electric displacement in a linear isotropic (dipole)
302 points/sphere). At low discretization level and no smoothing, polarizable medium is

variations in the energy surface of around 2 kcal/mol occur as
the OH™ and ethylene sulfate separate. At intermediate and full
smoothing s = 0.5 and 1), these variations are negligible. At

high discretization level, the effect of smoothing is much less
dramatic; i.e., all the curves are well behaved and almost The polarizationP can be expressed in terms of the dielectric

Appendix A

D=E+47P=¢E (A-1)

indistinguishable. The curve correspondingyto= 0 exhibits function and electric displacement as
minor variations as the reactants separate on the order of 0.1
kcal/mol. Overall, these results demonstrate that the present D-E [e—1 e — 1
hod i h i file in solution relati h P= = E= D (A-2)
method improves the reaction profile in solution relative to that 4ot 4o Jore

of a discontinuous solvation potential, especially at a low
discretization level, and provide results that are within the
accuracy range (0-11 kcal/mol) required of most chemical
applications.

from which the polarization charge density becomes

e—1 e—1
apolz—V-Pz—V(Me )-D—( - )po (A-3)

5. Conclusion

i . . This equation is equivalent to eq 13 derived previously. Consider
A(‘jmle‘k’]v soLvanp mo((j:IeI bgsi(:] on tt|1e c_onductor-llkef Sﬁreen'gglthe case of a dielectric function that varies rapidly but continu-
mode 3‘3 iﬁn mttrp uced. le'[;o&/at.lont_ene.rgty 0 tte. mode ously frome; in region 1 toe; in region 2 across a boundary
'S SMOOTH WIth CONtNUOUS anaiytic derivatives, 1t COMains N0 ver of thicknessix = x, — x, in the directionny; normal to
singularities and involves the solution of a set of linear L . .

: . the layer. If the variation in the dielectric across the boundary
equations. The model uses a solvent accessible surface for th(?s linear. then
cavity representation and smooth Gaussian basis functions to '
expand the reaction-field surface charge density and model
Coulomb interactions between surface elements. Discretization XX n X=X A
of atomic surface elements is based on high-order angular M =ea - te 3y (A-4)
quadrature schemes for spherical harmonics. The Gaussian
exponents of the surface elements are calibrated to reproduc
the exact Born energy for spherical ions and a uniform
polarization surface charge density. Tests of the method
demonstrate that it is accurate in describing the dielectric _27 4

. ; . Ve(X) = n,, (A-5)
response of a conductor, and with a simple correction can be AX

Svith corresponding gradient
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Using eqgs A-4 and A-5, the terms involvirgin eq A-3 are
given by

_V(G— 1):_LE:
4me A 2
1 (€, — €)AX

AT (e — x)) + €406 — X))

2 Ny, (A-6)

B (6 — 1) _ (X — X)) + €,06 — X) — AX A7)

€ (X% — X) T €,(X — %)

The integrated polarization charge through the boundary layer

(along the normal directionyy) is

X 1 x2 Ve
L/;(lz Opo(X) dx=— = [~ ?'D ax —

4 Jx
xo € — 1
S poax a®)

If the static charge densify contains no explicit surface charge
density gy at the dielectric boundary, i.e., it is smooth in this
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Z;; = —1 (which impliesy; = —Qg). The constrained variational
condition is

H{Epo(0) = AT-(D"0 — y)} =0 (B-2)
where

Epol(o) = % o-pl)-oI'A'apol + ”gol'B'Po (B-3)
with solution
o) = —A(Bpy — D-2) = 0 (0) + 8034(2)  (B-4)
and

i=(D"A""D)™(Z + D"-A""B)-p,
=Q Repo (B-5)

region, then the normal component of the electric displacementwhere the matrixe® = D"*A~1-D andR = (Z + DT-A1.B)
is also smooth since it satisfies the Maxwell relation eq 9. In have been introduced;(0) = —A~1-B-po is the unconstrained

the limit the boundary layer thickness goes to zero, i,

surface charge vector, aM;o,(i) = A~1.D-1 is the constraint

andpo are constant and can be taken out of the integral, leading correction. Substituting this expression into the energy equation

to

i, ol o
__ 1 fo (e, — €)AX
AN (ex = %)) + €306 — X)°
N (fxz (X — X;) + (%, — X) — AX x) N

X1 €% — X) T 6,(X — X))

dx) D-n,,

1(1 1

Z—E(;L—E—z) D'I’l21+ Ax |1

log(eq/e,)
+ #) 0o

€7 €

(A-9)

which is identical to the expression of eq 20.

Appendix B

Constrained Variations. Consider the set df; constraint
conditions on the surface charge of the form
I:)T'apol = Z'po =Yy (B'l)

whereopo and pp areM x 1 andN x 1 vectors representing

leads to

1

* 1 * *
Epol(l) = 2 opoI(O)T'B'PO + 2 60‘pol(l)T'A'6apol(/1)

1
=Ep(0) 35 AT-Q-A

=2 P1[Gyo0) + 3G (A)]po =

1
> Po"Gpo(4)-po (B-6)

whereGpo(d) = Gpol(0) + 0Gpoi(4) is the Green’s function of
the constrained variational procedu@,(0) = —BT-A"1-B is

the unconstrained Green’s function (underscored by the zero
argument) of eq 43, andiGpoi(4) = RT-Q 1R is the constraint
correction. It is clear from the above equation that the energy
of the constrained solution is equal to the unconstrained solution
(eq 43) plus a positive quadratic term involving the vector of
Lagrange multiplierst. This term is equal to the electrostatic
self-energy of the constraint surface charge correaib:m,(i).

In the limit that the surface elements become complete, the
Lagrange multipliers and corresponding constraint penalty
vanish.

It is noteworthy to discuss some implications of using the

the polarization surface charge and static charge densities (se@onstrained variational functional of eq B-6. It might be argued

section 3.1), respectivel\p, Z, andy have dimension$! x
Ne, Ne x N, and No x 1, respectively, and define thi.
constraint conditions such that tfte constraint is given by;

that this functional is favorable since it results in a surface charge
vector that rigorously satisfies the constraint conditions (such
as Gauss'’ law, for example), and consequently the reaction field

Djiopo;, = ¥i. It is assumed that the constraint values are linear that is produced may be more realistic in terms of affecting a
functions of the static density; i.e,= Z-po. For example, the polarization response in the solute. However, thisnit

Gauss’ law constraint on the total surface charge, assuming thenecessarilthe case. In quantum mechanical calculations where
surface and static charge densities are expanded in a basis othe polarization of the solute is itself determined from a
L, normalized functions, correspondsiig = 1, D;j; = 1, and variational principle, the reaction field potential that enters the
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Fock or Kohn-Sham Hamiltonian operators is defined (in the A. The van der Waals and solvent accessible surfaces are

basis ofpg) by mathematically identical in their constructi&hThe solvent
excluded surface is generated by the contact of the surface of
Voo — éEpoI(j') the solvent probe with the van der Waals surface.
RF 0Py The van der Waals and solvent accessible surfaces have the
advantage that evaluation of many of the derivative terms is
= Gpol4)*po straightforward since the position of each surface element is
related to a unique atom position by a fixed translation (although
=g 0’50|(0) + (BT + ZT-Qfl-DT)- 5”;;o|( ) the surface element area and its associated derivatives are more

complicated, as discussed below). A disadvantage of the these
surfaces is that surface elements centered on adjacent atoms
can overlap, and Coulomb interactions modeled by point charge
interactions between surface elements can diverge. A suggested
method to counter this problem is to excise surface elements in
the grooves formed by overlapping spheres that results in
separated patches of atomic surface &rdhe solvent excluded
surface, on the other hand, is smooth and avoids many of the
problems of overlapping surface elements; however, the map-
ping between elements and atomic positions is significantly more
complicated, and the derivatives are correspondingly more
involved

An analytic mapping between surface element positions and
atomic positions is a necessary but not sufficient condition to
ensure that the solvation potential is smooth and has continuous,
nonsingular derivatives. Conformational changes can cause new
1 T.8T.A LB regions of the molecule to become exposed to solvent or buried,

2 Po Po and consequently new surface elements to appear or disappear

in the equations for the solvation eneffyConsequently, an

(B-8) additional requirement for a smooth solvation potential is that
new surface elements enter or exit the expansion of the
polarization surface charge density smoothly with respect to the
energy. As will be shown in the next section (eq 81), a sufficient
condition to satisfy the smoothness criteria is that the magnitude

. of the inverse diagonah matrix elements (or the analogous
Vee = 5 pol _ Gbm(/l)'l’o = BT"’EOM) (B-9) matrix elements in other boundary element methods) va_mish

Po smoothly when a new surface element enters the expansion of

) ) . ) .. the polarization surface charge density. This behag#rbe
that is the electrostatic potential of the constrained polarization 5commodated by a model in which the diagonal matrix

=Bohy (1) + 274 (B-7)

In the above equation, the quantiti®&-a,0 represent the
electrostatic potential of the surface charge dengjty. The
reaction field potential of the constrained variational energy
functional is equal to the electrostatic potential of the resulting
surface charge densihyr‘;ol(/l) plus the constraint ternZ-A.
Consequently, the potential that enters the Fock or Kaimam
Hamiltonian operators is the electrostatic potential of the surface
chargeonly in the absence of constrainise.,4 = 0.

Alternately, one can consider the modified energy functional

' 1 %
Epola) = i p-lo-'BT' pol(i)

1 )
= E P-IO—.GpoI(;L)'PO

whereG,(1) = — BT"A""B" andB’' = B — D-Q""R. This
functional produces the reaction field potential

surface charge vectar,,(4). Unlike the functional(4) of elements vary inversely with the area of the corresponding
eq B-6, the modified energyE,,(4) is not related by a  gyrface element. There are two practical difficulties with this
variational principle to the surface charge vecigp(4). At strategy: (1)The calculation of surface element areas and their

low surface discretization levels, it is observed that the functional derjyatives is complicated and computationally expeasiAn

Ej0(4) often provides energies closer to the “exact” energy in exact analytic representation afomic surface areassing the

the basis set limit than eithé,o(0) or Epo(4). Gauss-Bonnet theorem for a solvent accessible surface is
considerably costly, and has prompted the development of more
efficient approximate method3The case of calculation of the

Continuous Gradients for Solvation Potentials.The pur- area of individual surface element§modeled by curved
pose of this appendix is to discuss the requirements for a polyhedra) is more difficult than for atomic surface areas, and
boundary element solvation potential to be smooth; i.e., have extension to solvent excluded surfaces is more difficult still.
continuous, nonsingular derivatives with respect to the atomic Considerable effort and progress has been made to derive
positions. These conditions are essential for the stability of expressions for surface element areas and their derivatives for
numerical procedures such as geometry optimizations, transitioncertain types of surface elements (sometimes referred to as
state searches, and molecular dynamics calculations. Almosttesserag for use in boundary element solvation methétls.
universally, conventional boundary element methods do not These expressions were derived fogiaen set of tesserae
satisfy these requirements. generated from a numericssellation proceduror partition-

The derivatives with respect to tileandB matrixes of eqs ing the molecular surface into surface elements. TAe
39-43 depend on the definition of the surface that defines the tessellation procedure used to determine the surface elements
dielectric boundary. Three types of surfaces are most commonlymust be smoothin order for the solvation potential to be a
employed (Figure 1). Thean der Waals surface the closed smooth analytic function, theessellation procedure must
surface that encapsulates the volume created by overlappingoroceed in a manner such that the area of each tessera can vanish
atom-centered van der Waals spheres. 3bleent accessible and appear smoothly. The optimal partition scheme in terms of
surfaceis the surface created by the center of a solvent probe efficiency?? is not necessarily smooth, since this would force
that makes contact everywhere on the outside of the van dermany tesserae to have relatively small area. In light of these
Waals surface. For water, the radius is typically taken to be 1.4 difficulties, a frequently employed approximation is to neglect

Appendix C
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entirely the derivative contribution from the surface element in the case of large biomolecules where structural water plays
areas (e.g., the diagonAl matrix elements}® Although the an important role is to treat explicitly the ordered solvent layers,
conductor-like screening model has been used in the preseniand model the region outside by a dielectric continifrfihe
discussion to outline difficulties associated with constructing construction of hybrid potentials that model different parts of a
an analytic boundary element solvation potential, the problem large system with different levels of theory has been successful
is directly analogous and equally relevant in other boundary in many areas of computational chemistry.

element methods such as the polarizable continuum niédel.
In the following section, a relatively simple scheme that
overcomes these difficulties is presented. The remainder of this
section provides a brief description of gradient calculations with

Appendix D

other (non boundary-element) solvation methods.

Dependence of Born Energy on Gaussian Exponentfn

The problem of defining surface element derivatives does not this appendix a model is derived that provides analytic equations

arise in methods based on the generalized Born equafi&i®?
finite difference or finite element solution of the Poisson
Boltzmann equation, or in higher level integral equation
theories*® Hence, the definition and calculation of a smooth

for the relationship between the Gaussian exponégtshe
number of discretized surface poirt and the scaled Born

energyEgorm(y) = (Y/2)QAR.
In the present method, the solvation of a spherical ion of

solvation potential is less problematic for these methods. The chargeQ and radiusR is modeled by a set oM spherical
solvation potential in methods based on the generalized BornGaussian functions at discretized points on the surface. These
equation has the form of an effective analytic pairwise potential. Gaussian functions serve as basis functions for the induced
These models are practical and effective for many app"caﬁons, reaction-field surface charge, which is determined as a solution
but it is not yet clear how they perform in applications to very to the variational condition for the energy (eq 37). The matrix
large molecules. For grid-based solutions of the Poisson solution (eq 41) requires computation of the inverse ofAhe
Boltzmann equation, the “surface” at the dielectric discontinuity Matrix that contains the GaussiaGaussian Coulomb interac-
in boundary element methods is replaced by a smooth dielectrictions between surface elements and hence depends on the
function defined, for example, as number of Gaussian functions and their placement on the
surface, as well as on their exponents. It is not difficult to solve
e(r)=e€,+ (e,— ) exp [~ z Bu(r —R)] = numerically for the Gaussian exponents that give the exact Born
7 solvation energy and uniform charge density; however, for the
€1+ (€, — ) H(r; {R}) (C-1) purposes of dis_cussion, it is instructive to derive_analytic
equations for a simple model that captures the essential features
of the applied method.

Consider a spherical model bf surface elements. For a unit
sphere with a charg® at its center, a representative surface
element is modeled by the surface arc that is excised by a cutting
plane perpendicular to theaxis corresponding to the polar angle
0 < 0 < 6,. If the remainder of the sphere has a uniform surface
charge density,o/47, the potential at the center of the surface
element @ = 0) due to the surface charge is given by

x O oI/4‘7[ .
Po(Tpon Oo) = fOZH f(,o m sin(9) do d¢ =

Opol B Opol sin (00/2) (D'l)

where § = 1/kgT, kg is the Boltzmann constanf is the
temperature, and thg(r) are atomic energy-like functions that
define the volume exclusion functidi(r; { R;}).3” The smooth-
ness of the dielectric implies the polarization density occupies
a volume in regions of changing dielectric (eq 13). The
Poissor-Boltzmann equation is a highly approximate and
computationally efficient example of a more general class of
integral equatiormethod<® Methods based on integral equation
theory of solutions take into account the exclusion of solvent
from the solute volume with an exponential term in the solvent
probability distribution function,
P(r) ~ e "M (C-2)
whereW(r) is the potential of mean force. In the region where and the surface area is
solute and solvent particles overlap(r) goes to infinity, and
the solvent probability goes to zero. These higher level theoriesArea(go) =
are powerful techniques for describing solvation properties;
however, the solution of the integral equations is much more
difficult and expensive to compute for large systems in three
dimensions than are boundary element methods. A strategylf the sphere is discretized intd surface elements, the area of
similar to that of eq C-2 could be adopted in a boundary element each element is/4M. Substitution into the above equation for
framework; however, it is desirable to maintain the advantage the surface area giveé for a given number of surface elements
of the linearity of the equations and the use of simple Coulomb M per sphere:
interactions for which efficient linear-scaling methods exist.
Simple continuum solvation models can in principle offer an
alternate strategy to the application of more expensive integral
equation theories or explicit simulation of the full solvent
environment. The former methods are very useful in the regime
where the electrostatic effects of the external environment are
well approximated by a dielectric continuum. A recent paper
has suggested that estimations of the free energy of solvation
derived fromany of several continuum models are comparable
for a given parametric fit; the most important factor relating to The self-energy of each surface element is taken to be the
whether the molecule forms a hydrogen bond or®hét strategy Coulomb self-energy of a Gaussian charge density with

S5 Ji sin(0) 4o dg = 21 — cosp)] =
47 Sirf(64/2) (D-2)

0,(M) = 2sin {(1/V/M) (D-3)

and the expression fafp, above can be written in terms M

¢0(0poI' M) = Opol — Opollm (D-4)



11078 J. Phys. Chem. A, Vol. 103, No. 50, 1999

exponent¢; i.e., Eser = (1/2)iv/2/7. This allows energy
expression to be written as

1 e
E(Opol) = Eo]z)olé 2l + O‘poI(/J)O + Qo

pol =

1, (M—N+§@)
M

2 Gpol

+ Qapol (D'S)

Solution of the variational conditiodE/dopo = 0 leads to

M
= -6
%pal © (|V - N + Cﬁﬂ) (D )
and energy
* 1 M
E =—-2zQ D-7
(Opol) 2 (V - «/_M + C\/ET) ( )

*

The value ofg,,,, and hence the ener@(o,,), depends on the
number of surface points! and Gaussian exponeft For a
given value ofM, the total energy is required to be equal to the
Born solvation energy for a conduct(op,(5)) = —Q%2.
The solution is

_ W=

t= /2 (D-8)

With this choice ofg, the surface chargegol(g) = —Qisin
accord with Gauss’ law (eq 21). The above equations establish
relationships between the total enefgythe Gaussian exponents

¢, and the number of surface elemehtsin particular, it allows

us to assess how sensititzeis with respect to variations iy

for a given value ofM. This can be quantified by looking at
the ratio of the scaled enerdy(y) = E(o;o,(i;/y)) resulting
from division of¢ by a factory with the corresponding unscaled

value E(1) = Egorm,
4
1
+(1——|y

This quantity is plotted as a function pfin Figure 3b for several
values of M. The results follow very closely the observed

E(C/V))/EBorn = 1 (D—9)

York and Karplus

where integration is in spherical polar coordinates around atom
2, andfy and 6, are given by

fo=cos’ (r,+RR—R)I(2rR)  (E-2)

Oou=1C0S ' (i, + R — Rgutl)/(erZRZ) (E-3)

The integral centered on atom 2 can be transformed into an
integral centered on atom 1 that can be computed analytically,

SA, = 21(Rr;) [- 1 dr

Ry

_ (1- al)stl [(1-ay)+2R] 7R,

1o (E-4)

In the present model, the “surface area” is defined to include
integration of the switching function in the switching region so
that the surface area is a smooth function even for a discretized
surface. This is desirable if one chooses to include empirical
energy terms such as cavitation and dispersion terms that are
functions of the surface area. The expression for the surface
area of atom 2 in the present model is

Routl

SA, = 27(RJr) [ ™ Sulllr = Ry /Ry Jr dr

_TRR, [Rl + (g = a)RSWl

o

(E-5)

whereSy(r) is the switching function defined in eq 64. If it is
required that the surface area of eq E-5 equals the exact surface
area of eq E-4 for a diatomic system, an equation is obtained
that can be solved for the parameterThe result is

Ry e
(stl) p

where (from eq 86) ¥/ = Ri/Rs,, andp is a parameter that
depends on the form of the switching function that in the present

1 Ry

1
=4 — —
12 R,

1
2P

a 2
(E-6)

L1
Y

dependence of the Gaussian exponents shown in Figure 3a. A§ase (€q 64) is equal to¥Z)*. Note that the parametes; by
the number of surface elements increases, the quantity in eqthis definition is independent of the radi&s and separation

D-9 becomes less sensitive to variationgjrand in the limit
M — oo, the scaled energy is exactly the Born solvation energy
foranyy > 0.

Appendix E

Smooth Surface Area Model.In this appendix a simple
smooth surface area model is proposed based on a discretize
solvent accessible surface and the smoothing scheme introduce
in the main text. In particular a formula for the shift parameter
o is derived that shifts the center of the switching region relative
to the atomic radius (Figure 2).

For a diatomic system consisting of atoms 1 and 2 onzthe
axis, consider the surface area of atom 2 that lies within the
switching region of atom 1 (SAn Figure 2); i.e., between the
outer switching radiu&., and the atomic radiuB; (since the
exact surface area does not penetRajeThis region of surface
area on atom 2 is

SA, = 27R2 Lj°”‘sin(0) do (E-1)

distanceR;, and hence can be evaluated uniquely for each atom
(instead of each atom pair) and does not contribute to gradient
terms. Although it is possible that one might derive an improved
form for thea parameters, for the present examples, this simple
description is adequate and amenable to facile implementation
and efficient calculation. Moreover, the importance of the
arameters become less significant at higher surface discreti-

gation levels where th&g, values become smaller. Conse-

uently, increasing the discretization level allows a systematic
means of obtaining a more accurate solution.
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